首页> 外文学位 >Modeling and simulation of arsenic activation and diffusion in silicon.
【24h】

Modeling and simulation of arsenic activation and diffusion in silicon.

机译:硅中砷活化和扩散的建模和仿真。

获取原文
获取原文并翻译 | 示例

摘要

One of the critical problems that exist in a Very Large Scale Integrated circuit (VLSI) process modeling today is the prediction and simulation of arsenic behavior in silicon during the integrated circuit fabrication. This work is focused on understanding and modeling of the physical processes which occur during arsenic diffusion and deactivation.; Arsenic deactivation is a complicated process due to fast kinetics and strong interstitial ejection which accompanies deactivation. We have used ab-initio calculations in order to gain insight into the fundamental processes involved in arsenic activation/deactivation. It has been proposed that several second nearest neighbor As atoms (two or more) may kickout an adjacent Si atom forming an electrically inactive arsenic-vacancy cluster and a self-interstitial. A physical model based on this mechanism was derived and used successfully to match a variety of electrical data as well as interstitial supersaturation data measured during deactivation. This model was applied to understanding and prediction of the ultra shallow junction formation. Several effects such as rapid As diffusion at high concentrations and the existence of grown-in vacancies after amorphous/crystalline regrowth must be included to account for the discrepancies between what seems to be a mobile fraction of the profile and the electrically active fraction.; An integral part of this work involves the simulation of self-interstitial cluster formation. Total energy calculations based on empirical Molecular Dynamics (MD) simulations were performed in order to study the energetics of interstitial aggregates as a function of size and configuration. These results provide insight into ion implant annealing processes. A Kinetic Precipitation Model (KPM) was used to analyze the evolution of {lcub}311{rcub} defects. We discuss small interstitial clusters and their role in the initial stages of annealing after ion implantation and during As deactivation.
机译:当今超大规模集成电路(VLSI)工艺模型中存在的关键问题之一是集成电路制造过程中硅中砷行为的预测和模拟。这项工作的重点是对砷扩散和失活过程中发生的物理过程的理解和建模。砷失活是一个复杂的过程,这是由于失活伴随着快速的动力学和强烈的间隙喷射。为了获得对砷激活/失活涉及的基本过程的了解,我们使用了从头算的计算方法。已经提出,几个第二近邻As原子(两个或更多个)可以踢出相邻的Si原子,从而形成电惰性砷空位簇和自填隙。导出了基于此机制的物理模型,并将其成功用于匹配各种电数据以及停用期间测得的间隙过饱和数据。该模型用于理解和预测超浅结的形成。必须考虑多种影响,例如高浓度As的快速扩散以及非晶/晶体再生长后存在的空位,以解决似乎是轮廓的可移动部分与电活性部分之间的差异。这项工作的组成部分包括自填隙团簇形成的模拟。进行了基于经验分子动力学(MD)模拟的总能量计算,目的是研究间隙聚集体的能量随尺寸和构型的变化。这些结果提供了对离子注入退火工艺的了解。使用动力学沉淀模型(KPM)分析{lcub} 311 {rcub}缺陷的演变。我们讨论了小间隙团簇及其在离子注入后退火和砷钝化过程中在退火初期的作用。

著录项

  • 作者

    Fastenko, Pavel.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号