首页> 外文学位 >Structure-function studies of vector peptides: Increasing the bioavailability of bioactive compounds.
【24h】

Structure-function studies of vector peptides: Increasing the bioavailability of bioactive compounds.

机译:载体肽的结构功能研究:增加生物活性化合物的生物利用度。

获取原文
获取原文并翻译 | 示例

摘要

Cell-permeable “vector” peptides (vps) are lysine- and arginine-rich import sequences that carry unrelated molecular cargoes across cellular membranes without relying on classical endocytosis. Vector peptides have already been used to facilitate the intracellular delivery of other small peptides, oligonucleotides, and pharmacological cargoes. Furthermore, a recent report suggests the potential for vector peptides to translocate across the blood-brain barrier (BBB).; The purpose of this project was to advance vector peptide technology. Our goal was to improve the efficient delivery of intact, bioactive cargo compounds across cellular membranes. We used Antennapedia (Antp)-related, the HIV-1 transactivator of transcription (TAT)-derived, and arginine (Arg)-7 vector peptides and various model cargo peptides to test the hypothesis that efficient cellular penetration by vector peptides can be improved by pursuing novel coupling strategies and vector modifications. We tested the hypothesis that such novel coupling and modification strategies enhanced both the bioavailability and biological potency of intact cargoes. Our experiments revealed that vectorized peptides consistently retained their biological activity. Our results also indicated appreciable cellular penetration of impermeable peptides, such as a hexapeptide HIV-1 integrase inhibitor that exhibited unexpected cytotoxicity. Importantly, we found that internalization efficiency is complicated by the fact that cationic vector peptides bind tightly to inert surfaces. A corollary to this finding, our results indicated that micromolar concentrations of vectorized cargo are necessary to achieve appreciable internalization. We further clarified a hierarchy of efficient cellular penetration by different vector peptide families, where [Arg-7]-vp proved significantly more superior than Antp- and TAT-vps. In addition, we wanted to test the capability for vector peptides to transcytose cellular barriers. Utilizing a co-culture BBB model, our preliminary results suggested that the [Pro50] Antp-vp could carry intact bioactive cargoes across a cellular barrier.; This project helped demonstrate the feasibility of cationic vector peptides to internalize several different cargo peptides. These results also suggested that the unique structural properties that allow vps to penetrate cells might be responsible for their unexpectedly non-specific attachment to inert surfaces, such as glass. Therefore, findings contained herein may prove useful in expanding the utility of vector peptide technology in a broad range of biomedical applications.
机译:细胞可渗透的“载体”肽(vps)是富含赖氨酸和精氨酸的导入序列,可在细胞膜上携带无关分子货物,而无需依赖经典的内吞作用。载体肽已经用于促进其他小肽,寡核苷酸和药理物质的细胞内递送。此外,最近的报告表明载体肽可能跨血脑屏障(BBB)转运。该项目的目的是发展载体肽技术。我们的目标是提高完整生物活性货物化合物跨细胞膜的有效递送。我们使用了与天线(Antp)相关的,HIV-1反转录激活因子(TAT)衍生的精氨酸(Arg)-7矢量肽和各种模型货物肽,以检验可以提高矢量肽对细胞有效渗透的假说通过追求新颖的偶联策略和载体修饰。我们检验了这样的假设,即这种新颖的偶联和修饰策略可增强完整货物的生物利用度和生物效力。我们的实验表明,载体化肽始终保持其生物学活性。我们的研究结果还表明,不可渗透的肽(例如六肽HIV-1整合酶抑制剂)具有明显的细胞渗透性,表现出出乎意料的细胞毒性。重要的是,我们发现,阳离子载体肽与惰性表面紧密结合,这一事实使内部化效率变得复杂。这一发现的推论是,我们的结果表明,矢量化货物的微摩尔浓度对于实现可观的内部化是必要的。我们进一步阐明了不同载体肽家族对细胞有效渗透的层次,其中[Arg-7] -vp明显优于Antp-和TAT-vps。此外,我们还想测试载体肽跨细胞酶细胞屏障的能力。利用共培养的BBB模型,我们的初步结果表明[Pro 50 ] Antp-vp可以通过细胞屏障携带完整的生物活性货物。该项目帮助证明了阳离子载体肽内在化几种不同货物肽的可行性。这些结果还表明,允许vps穿透细胞的独特结构性质可能是其意外地非特异性附着于惰性表面(如玻璃)的原因。因此,本文包含的发现可能被证明可用于在广泛的生物医学应用中扩展载体肽技术的实用性。

著录项

  • 作者

    Chico, Diane Ebueng.;

  • 作者单位

    The University of Texas Graduate School of Biomedical Sciences at Galveston.;

  • 授予单位 The University of Texas Graduate School of Biomedical Sciences at Galveston.;
  • 学科 Biology Cell.; Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 227 p.
  • 总页数 227
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号