首页> 外文学位 >Efficient algorithms for solving static Hamilton -Jacobi equations.
【24h】

Efficient algorithms for solving static Hamilton -Jacobi equations.

机译:解决静态汉密尔顿-雅各比方程的有效算法。

获取原文
获取原文并翻译 | 示例

摘要

We present an algorithm for computing the closest point, transform to an explicitly described manifold on a rectilinear grid in low dimensional spaces. The closest point transform finds the closest point on a manifold and the Euclidean distance to a manifold for the points in a grid. We consider manifolds composed of simple geometric shapes, such as, a set of points, piecewise linear curves or triangle meshes. The algorithm solves the eikonal equation |∇u| = 1 with the method of characteristics. For many problems, the computational complexity of the algorithm is linear in both the number of grid points and the complexity of the manifold.;Many query problems can be aided by using orthogonal range queries (ORQ). There are several standard data structures for performing ORQ's in 3-D, including kd-trees, octrees, and cell arrays. We develop additional data structures based on cell arrays. We study the characteristics of each data structure and compare their performance.;We present a new algorithm for solving the single-source, non-negative weight, shortest-paths problem. Dijkstra's algorithm solves this problem with computational complexity O ((E + V)log V) where E is the number of edges and V is the number of vertices. The new algorithm, called Marching with a Correctness Criterion (MCC), has computational complexity O (E + RV), where R is the ratio of the largest to smallest edge weight.;Sethian's Fast Marching Method (FMM) may be used to solve static Hamilton-Jacobi equations. It has computational complexity O (N log N), where N is the number of grid points. The FMM has been regarded as an optimal algorithm because it is closely related to Dijkstra's algorithm. The new shortest-paths algorithm discussed above can be used to develop an ordered, upwind, finite difference algorithm for solving static Hamilton-Jacobi equations. This algorithm requires difference schemes that difference not only in coordinate directions, but in diagonal directions as well. It has computational complexity O(RN), where R is the ratio of the largest to smallest propagation speed and N is the number of grid points.
机译:我们提出一种算法,用于计算最接近的点,变换为低维空间中直线网格上明确描述的流形。最近点变换可找到流形上的最近点,并找到网格中各点到流形的欧几里得距离。我们考虑由简单的几何形状(例如一组点,分段线性曲线或三角形网格)组成的流形。该算法求解本征方程|∇u|用特征方法= 1。对于许多问题,该算法的计算复杂度在网格点数和流形的复杂度上都是线性的。;许多查询问题可以通过使用正交范围查询(ORQ)来解决。有几种用于执行3-D ORQ的标准数据结构,包括kd树,八叉树和单元格阵列。我们基于单元阵列开发其他数据结构。我们研究了每种数据结构的特征并比较了它们的性能。我们提出了一种新的算法,用于解决单源,非负权重,最短路径问题。 Dijkstra的算法以计算复杂度O((E + V)log V)解决了这个问题,其中E是边的数量,V是顶点的数量。新算法称为带有正确性准则的行进(MCC),计算复杂度为O(E + RV),其中R是最大边缘权重与最小边缘权重之比。静态汉密尔顿-雅各比方程。它具有计算复杂度O(N log N),其中N是网格点的数量。 FMM被认为是一种最佳算法,因为它与Dijkstra的算法密切相关。上面讨论的新的最短路径算法可用于开发有序的迎风有限差分算法,用于求解静态Hamilton-Jacobi方程。该算法需要不仅在坐标方向上而且在对角线方向上也不同的差异方案。它具有计算复杂度O(RN),其中R是最大传播速度与最小传播速度之比,N是网格点数。

著录项

  • 作者

    Mauch, Sean Patrick.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 237 p.
  • 总页数 237
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号