首页> 外文学位 >Markov random fields on time-varying graphs, with an application to portfolio selection.
【24h】

Markov random fields on time-varying graphs, with an application to portfolio selection.

机译:时变图上的马尔可夫随机字段及其在投资组合选择中的应用。

获取原文
获取原文并翻译 | 示例

摘要

When modelling multivariate financial data, the problem of structural learning becomes compounded by the fact that the covariance structure changes with time. Previous work has focused on modelling those changes using multivariate stochastic volatility models or multivariate auto-regressive heteroskedacity models. In this thesis we present an alternative to these models that focuses instead on the latent graphical structure related to the precision matrix. The precision matrix proves to be a natural parameterization in the multivariate Normal model. It is intimately related to the coefficients in the simultaneous regression of each variable on all of the remaining ones. This thesis develops a graphical model for sequences of Gaussian random vectors when changes in the underlying graph—which is specified by zeroes in the precision matrix—occur at random times, and a new block of data is created with the addition or deletion of an edge. We show how a Bayesian hierarchical model incorporates both the uncertainty about that graph, and the time-variation thereof. Our main objective is to learn the graph underlying the last, most current, block of data. In fact, our Bayesian framework allows us to make inference about the whole history up to and including the last block.
机译:在对多元财务数据进行建模时,由于协方差结构会随时间变化,因此结构学习的问题变得更加复杂。先前的工作着重于使用多元随机波动率模型或多元自回归异方差模型对这些变化进行建模。在本文中,我们提出了这些模型的替代方案,而侧重于与精度矩阵有关的潜在图形结构。精度矩阵被证明是多元正态模型中的自然参数化。它与其余所有变量同时回归的系数密切相关。当基础图的变化(由精度矩阵中的零指定)在随机时间发生,并且通过添加或删除边创建新的数据块时,本论文针对高斯随机矢量序列建立了图形模型。我们展示了贝叶斯层次模型如何结合关于该图的不确定性及其时间变化。我们的主要目标是学习最新,最新数据块的图形。实际上,我们的贝叶斯框架使我们可以推断出直到最后一块的整个历史。

著录项

  • 作者

    Talih, Makram.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Statistics.; Economics Finance.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 统计学;财政、金融;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号