首页> 外文学位 >Microstructure-sensitive extreme value probabilities of fatigue in advanced engineering alloys.
【24h】

Microstructure-sensitive extreme value probabilities of fatigue in advanced engineering alloys.

机译:先进工程合金对疲劳的微观结构敏感性极值概率。

获取原文
获取原文并翻译 | 示例

摘要

A novel microstructure-sensitive extreme value probabilistic framework is introduced to evaluate material performance/variability for damage evolution processes (e.g., fatigue, fracture, creep). This framework employs newly developed extreme value marked correlation functions (EVMCF) to identify the coupled microstructure attributes (e.g., phase/grain size, grain orientation, grain misorientation) that have the greatest statistical relevance to the extreme value response variables (e.g., stress, elastic/plastic strain) that describe the damage evolution processes of interest. This is an improvement on previous approaches that account for distributed extreme value response variables that describe the damage evolution process of interest based only on the extreme value distributions of a single microstructure attribute; previous approaches have given no consideration of how coupled microstructure attributes affect the distributions of extreme value response. This framework also utilizes computational modeling techniques to identify correlations between microstructure attributes that significantly raise or lower the magnitudes of the damage response variables of interest through the simulation of multiple statistical volume elements (SVE). Each SVE for a given response is constructed to be a statistical sample of the entire microstructure ensemble (i.e., bulk material); therefore, the response of interest in each SVE is not expected to be the same. This is in contrast to computational simulation of a single representative volume element (RVE), which often is untenably large for response variables dependent on the extreme value microstructure attributes.;This framework has been demonstrated in the context of characterizing microstructure-sensitive high cycle fatigue (HCF) variability due to the processes of fatigue crack formation (nucleation and microstructurally small crack growth) in polycrystalline metallic alloys. Specifically, the framework is exercised to estimate the local driving forces for fatigue crack formation, to validate these with limited existing experiments, and to explore how the extreme value probabilities of certain fatigue indicator parameters (FIPs) affect overall variability in fatigue life in the HCF regime. Various FIPs have been introduced and used previously as a means to quantify the potential for fatigue crack formation based on experimentally observed mechanisms. Distributions of the extreme value FIPs are calculated for multiple SVEs simulated via the FEM with crystal plasticity constitutive relations. By using crystal plasticity relations, the FIPs can be computed based on the cyclic plastic strain on the scale of the individual grains. These simulated SVEs are instantiated such that they are statistically similar to real microstructures in terms of the crystallographic microstructure attributes that are hypothesized to have the most influence on the extreme value HCF response. The polycrystalline alloys considered here include the Ni-base superalloy IN100 and the alpha + beta Ti alloy Ti-6Al-4V. In applying this framework to study the microstructure dependent variability of HCF in these alloys, the extreme value distributions of the FIPs and associated extreme value marked correlations of crystallographic microstructure attributes are characterized. This information can then be used to rank order multiple variants of the microstructure for a specific material system for relative HCF performance or to design new microstructures hypothesized to exhibit improved performance. This framework enables limiting the (presently) large number of experiments required to characterize scatter in HCF and lends quantitative support to designing improved, fatigue-resistant materials and accelerating insertion of modified and new materials into service.
机译:引入了一种新颖的对微观结构敏感的极值概率框架,以评估材料在损伤演化过程中的性能/可变性(例如疲劳,断裂,蠕变)。该框架采用了新开发的极值标记相关函数(EVMCF)来识别与极值响应变量(例如应力,应力,弹性/塑性应变)来描述感兴趣的损伤演化过程。这是对先前方法的改进,该方法考虑了仅基于单个微结构属性的极值分布来描述目标损伤演化过程的分布式极值响应变量;先前的方法没有考虑耦合的微结构属性如何影响极值响应的分布。该框架还利用计算建模技术来识别微观结构属性之间的相关性,这些属性通过模拟多个统计体积元素(SVE)来显着提高或降低目标损伤响应变量的大小。给定响应的每个SVE被构造为整个微观结构集合(即散装材料)的统计样本;因此,每个SVE中感兴趣的响应预计不会相同。这与单个代表体积元素(RVE)的计算仿真相反,对于代表取决于极端值微结构属性的响应变量而言,它通常太大而无法承受;该框架已在表征微结构敏感的高周疲劳方面得到了证明(HCF)变异性是由于多晶金属合金中的疲劳裂纹形成过程(成核和微观结构的小裂纹扩展)所致。具体而言,该框架将用于估算疲劳裂纹形成的局部驱动力,并通过有限的现有实验对其进行验证,并探讨某些疲劳指标参数(FIP)的极值概率如何影响HCF疲劳寿命的总体变化性政权。已经引入了各种FIP,并且先前已将它们用作基于实验观察到的机制来量化疲劳裂纹形成可能性的手段。对于通过具有晶体可塑性本构关系的FEM模拟的多个SVE,计算了极值FIP的分布。通过使用晶体可塑性关系,可以基于单个晶粒度上的循环塑性应变来计算FIP。实例化这些模拟的SVE,以使它们在晶体学微观结构属性方面在统计上类似于真实的微观结构,这些属性被假设为对极值HCF响应的影响最大。这里考虑的多晶合金包括镍基高温合金IN100和α+βTi合金Ti-6Al-4V。在应用该框架研究这些合金中HCF的微观结构相关变异性时,表征了FIP的极值分布和相关的极值与晶体学显微组织属性的显着相关性。然后,此信息可用于为特定材料系统的相对HCF性能对微结构的多个变体进行排序,或设计假设可表现出改进性能的新微结构。该框架可以限制(目前)表征HCF散射所需的大量实验,并为设计改进的抗疲劳材料和加速将改性材料和新材料投入使用提供定量支持。

著录项

  • 作者

    Przybyla, Craig P.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.;Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 355 p.
  • 总页数 355
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号