首页> 外文期刊>International Journal of Plasticity >Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex Ti-6Al-4V
【24h】

Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex Ti-6Al-4V

机译:模拟的双相Ti-6Al-4V高周疲劳微观结构敏感性极值概率

获取原文
获取原文并翻译 | 示例
           

摘要

A newly developed microstructure-sensitive extreme value probabilistic framework to characterize the performance/variability for damage evolution processes is exercised to compare the driving forces for fatigue crack formation (nucleation and early growth) at room temperature for four different microstructure variants of a duplex Ti-6Al-4V alloy. The aforementioned probabilistic framework links certain extreme value fatigue response parameters with microstructure attributes at fatigue critical sites through the use of marked correlation functions. By applying this framework to study the driving forces for fatigue crack formation in these microstructure variants of Ti-6Al-4V, these microstructures can be ranked in terms of relative high cycle fatigue (HCF) performance and the correlated microstructure attributes that have the most influence on the predicted fatigue response can be identified. Nonlocal fatigue indicator parameters (FIPs) based on the cyclic plastic strain averaged over domains on the length scale of the microstructure attributes (e.g., grains, phases) are used to estimate the driving force(s) for fatigue crack formation at the grain scale. By simulating multiple statistical volume elements (SVEs) using crystal plasticity constitutive relations, extreme value distributions of the predicted driving forces for fatigue crack formation are estimated using these FIPs. This strategy of using multiple SVEs contrasts with simulation based on a single representative volume element (RVE), which is often untenably large when considering extreme value responses. The simulations demonstrate that microstructures with smaller relative primary α grain sizes and lower volume fractions of the primary α grains tend to exhibit less variability and smaller magnitudes of the driving forces for fatigue crack formation. The extreme value FIPs are predicted to most likely occur at clusters of primary α grains oriented for easy basal slip. Additionally, surrounding grains/phases with soft orientation shed load to less favorably oriented primary α grains, producing extreme value FIPs.
机译:运用新开发的微结构敏感极值概率框架来表征损伤演化过程的性能/可变性,以比较室温下双相Ti-的四个不同微结构变体的疲劳裂纹形成(成核和早期生长)的驱动力。 6Al-4V合金。前述概率框架通过使用标记的相关函数,将某些极值疲劳响应参数与疲劳关键部位的微观结构属性联系起来。通过应用该框架研究Ti-6Al-4V这些微结构变体中疲劳裂纹形成的驱动力,可以根据相对高循环疲劳(HCF)性能和影响最大的相关微结构属性对这些微结构进行排名可以确定预测的疲劳响应。基于微观结构属性(例如晶粒,相)的长度尺度上的区域平均的循环塑性应变的非局部疲劳指标参数(FIP)用于估算晶粒尺度上疲劳裂纹形成的驱动力。通过使用晶体可塑性本构关系模拟多个统计体积元素(SVE),可以使用这些FIP估算疲劳裂纹形成的预测驱动力的极值分布。这种使用多个SVE的策略与基于单个代表体积元素(RVE)的仿真形成对比,而在考虑极值响应时,RVE往往很大。模拟表明,具有相对较小的初生α晶粒尺寸和较低的初生α晶粒体积分数的显微组织倾向于表现出较小的变异性和较小的疲劳裂纹形成驱动力。预测极值FIP最有可能发生在取向为易于基底滑移的原生α晶粒簇上。另外,具有软取向的周围晶粒/相将载荷降低到取向较差的初生α晶粒上,从而产生极值的FIP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号