首页> 外文学位 >Surfaces with controlled morphology and wettability for advanced phase change heat transfer applications.
【24h】

Surfaces with controlled morphology and wettability for advanced phase change heat transfer applications.

机译:具有可控形态和润湿性的表面,适用于高级相变传热应用。

获取原文
获取原文并翻译 | 示例

摘要

Surface morphology and wettability have been identified as the key factors affecting phase change heat transfer. Controlling the surface characteristics would in turn provide new opportunity in phase change heat transfer applications. In this study, we explore various functional surfaces for advanced phase change heat transfer applications including advanced evaporators for micro heat pipes and new boiling heat transfer surfaces.;We first investigate the use of Cu2O and CuO nanostructures to alter the wetting characteristics of copper surfaces. We perform detailed characterization of the morphology and the wettability of copper oxide films formed by different oxidation schemes. Based on our comparative study, we demonstrate the ability to tune the wettability of copper surfaces from superhydrophilic to superhydrophobic.;We then demonstrate controlled bubble nucleation, growth, and departure by altering the wetting characteristics of surfaces for boiling heat transfer and microfluidic applications. Compared with a hydrophilic silicon surface, the bubble departure diameter is observed to be ∼2.5 times smaller on superhydrophilic CuO film and ∼3 times larger on hydrophobic Teflon surface. The experimental findings well corresponds to our numerical simulations. Based on the experimental and numerical findings, a new bubble departure model is suggested for superhydrophilic surfaces. By observing steady-period bubble nucleation on precisely defined hydrophobic islands, we also provide quantitative physical evidence consistent with the existent of nanobubbles of the order of 1 microm and contact angle with water greater than ∼170°.;Lastly, we introduce new evaporators for micro heat pipes. The new evaporator wicks composed of superhydrophilic copper micropost arrays are fabricated using electrochemical deposition combined with controlled chemical oxidation scheme. We perform capillary rate of rise experiments in conjunction with numerical simulations to characterize the capillary performance of micropost wicks. For the heat transfer performance test, the superhydrophilic wicks are self-saturated by a finite capillary pressure gradient and placed in 90 deg orientation to prevent flooding. The experiment is conducted at approximately 0.1 atm in a vacuum chamber. Integrated CuO nanostructures significantly enhance both capillary and heat transfer performance. As a solid fraction increases, the heat transfer rate increases due to the increases in thin film area. The critical heat flux, however, decreases since the capillary performance decreases with increasing solid fraction.
机译:表面形态和润湿性已被确定为影响相变传热的关键因素。控制表面特性将反过来为相变传热应用提供新的机会。在这项研究中,我们探索了用于先进相变传热应用的各种功能表面,包括用于微型热管的先进蒸发器和新型沸腾传热表面。;我们首先研究了使用Cu2O和CuO纳米结构来改变铜表面的润湿特性。我们对由不同氧化方案形成的氧化铜膜的形貌和润湿性进行了详细的表征。在比较研究的基础上,我们证明了将铜表面的润湿性从超亲水性调整为超疏水性的​​能力;然后我们通过改变沸腾传热和微流体应用的表面润湿特性,证明了受控的气泡成核,生长和脱离。与亲水性硅表面相比,在超亲水性CuO膜上观察到的气泡离开直径约小2.5倍,而在疏水性特氟隆表面则约大3倍。实验结果完全符合我们的数值模拟。根据实验和数值结果,提出了一种针对超亲水表面的新气泡离开模型。通过观察在精确定义的疏水岛上的稳态气泡成核,我们还提供了定量的物理证据,与存在的纳米气泡(约1微米)和与水的接触角大于约170°相一致;最后,我们引入了新的蒸发器微型热管。由超亲水性铜微柱阵列组成的新型蒸发器芯是采用电化学沉积结合受控化学氧化方案制造的。我们结合数值模拟进行毛细管上升率实验,以表征微柱芯的毛细管性能。对于传热性能测试,超亲水芯通过有限的毛细管压力梯度自动饱和,并以90度方向放置以防止溢流。实验在约0.1atm的真空室内进行。集成的CuO纳米结构显着增强了毛细管和传热性能。随着固体分数的增加,由于薄膜面积的增加,传热速率也增加。但是,由于毛细管性能会随着固体分数的增加而降低,因此临界热通量会降低。

著录项

  • 作者

    Nam, Young Suk.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号