首页> 外文学位 >Robust control of irrigation canals.
【24h】

Robust control of irrigation canals.

机译:严格控制灌溉渠。

获取原文
获取原文并翻译 | 示例

摘要

The design of irrigation water delivery systems involves decisions about siting, dimensions, and characteristics of facilities for conveyance, regulation, monitoring, and diversion of flow. The characteristics of all there individual system components work together to determine the performance of the entire irrigation water delivery system. With the ever increasing demand for water due to population growth and competition from non-agricultural demands, there is an urgent need for efficient management of irrigation resources. Improvements in the operation and maintenance of an irrigation delivery system can translate into better overall management in an irrigation project, and automation of irrigation canals can be an effective way to achieve such improvements. Automation of irrigation distribution canals improves water-delivery service to farmers, reduce operating cost and improve distribution efficiency. The conveyance and distribution performance of irrigation canals can be improved to better meet the requirements of farmers by providing modern methods of canal control. Therefore, to avoid overflows and always be able to satisfy the demand, the irrigation canal system must be controlled and robust to maintain desired flow rates and water surface elevations. The goal of the canal controls is to match the actual flow in the canal to the required flow for that day while maintaining water surface elevations within allowable limits. Canal control systems must provide timely deliveries to customers with little or no waste use of water and power under predicted and unknown demands (perturbations). Because of that the design of highly accurate control systems in the presence of significant system uncertainty requires the designer to seek a robust control system. A robust control system exhibits low sensitivities to unknown demands (disturbances) and is stable over a wide range of disturbance variations.; This research aims at strengthening the distribution link through the development of a robust control algorithm to provide for automatic control of a MIMO (multi-input, multi-output) water distribution system under unknown external perturbations. In the derivation, the canal between two gates is divided into N nodes, and the finite-difference forms of the continuity and the momentum equations are written for each node. The Taylor series is applied to linearize the equations around the initial steady state or equilibrium conditions. The Linear Quadratic Regulator (LQR) is designed to generate control input (optimal gate opening) u( k). With a known control input, measured depth and density matrices, a Kalman filter is designed to provide an optimal estimate of the state vector, x(k). The Separation Theorem is applied to combine LQR and Kalman filter as a Linear Quadratic Gaussian (LQG) controller. With combination of LQR and Kalman filter, there is some loss of robustness. To improve the robustness of the control algorithm, Loop Transfer Recovery (LTR) loop shaping technique is used. Loop shaping technique is an adjustment of the singular values of return ratio matrices to achieve desired closed-loop robustness and stability. To analyze the robustness of the controller, two robustness analysis methods are conducted: Singular Values and Bode Diagrams.
机译:灌溉水输送系统的设计涉及到有关选址,尺寸和设施特性的决定,以进行输送,调节,监控和分流。所有单独系统组件的特性共同作用,以确定整个灌溉水输送系统的性能。由于人口增长和对非农业需求的竞争,对水的需求不断增长,因此迫切需要对灌溉资源进行有效管理。灌溉输送系统的运行和维护方面的改进可以转化为灌溉项目中更好的整体管理,并且灌溉渠的自动化可以是实现此类改进的有效途径。灌溉渠的自动化可以改善对农民的供水服务,降低运营成本并提高分配效率。通过提供现代化的渠道控制方法,可以改善灌溉渠的输送和分配性能,从而更好地满足农民的需求。因此,为了避免溢出并始终能够满足需求,必须对灌溉渠系统进行控制并使其坚固,以维持所需的流速和水面高度。运河管制的目标是使运河中的实际流量与当天所需的流量相匹配,同时将水面高度保持在允许的范围内。运河控制系统必须按预期和未知需求(扰动)向客户提供及时的交付,而很少或不浪费水和电。因此,在存在重大系统不确定性的情况下进行高精度控制系统的设计需要设计人员寻求可靠的控制系统。鲁棒的控制系统对未知需求(干扰)的灵敏度较低,并且在各种干扰变化范围内均保持稳定。这项研究旨在通过开发鲁棒的控制算法来加强分配链路,以在未知外部扰动下提供MIMO(多输入多输出)供水系统的自动控制。在推导过程中,将两个闸门之间的渠道划分为N个节点,并为每个节点写出连续性和动量方程的有限差分形式。泰勒级数用于线性化方程组周围的初始稳态或平衡条件。线性二次调节器(LQR)设计为生成控制输入(最佳门打开)u(k)。利用已知的控制输入,测得的深度和密度矩阵,卡尔曼滤波器被设计为提供状态向量x(k)的最佳估计。分离定理适用于将LQR和卡尔曼滤波器组合为线性二次高斯(LQG)控制器。结合使用LQR和Kalman滤波器,会损失一些鲁棒性。为了提高控制算法的鲁棒性,使用了环路传输恢复(LTR)环路整形技术。环路整形技术是调整收益率矩阵的奇异值,以实现所需的闭环鲁棒性和稳定性。为了分析控制器的鲁棒性,进行了两种鲁棒性分析方法:奇异值和伯德图。

著录项

  • 作者

    Durdu, Omer Faruk.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号