首页> 外文OA文献 >Erosion prediction and control in irrigation canals.
【2h】

Erosion prediction and control in irrigation canals.

机译:灌溉渠的侵蚀预测与控制。

摘要

After the annual maintenance period and during the refilling of the canal downstream of a regulator the tail water depth of this canal is small and not sufficient to produce a hydraulic jump inside the solid apron. This results in a severe local scour problem for the canal bed. A traditional solution of this problem is to place crushed rock in the scour hole to prevent further scour; however, this method has not proved to be a permanent solution. To investigate this local scour problem a physical model for a one vent regulator was constructed and a non-uniform granular material was used to simulate the canal bed. This experimental studies revealed that there are five distinct flow regimes in the region of the scour hole, namely: (1) a jet attached to the bed, (2) breaking wave and adverse hydraulic jump, (3) a travelling hydraulic jump, (4) wave jump and diving jet, and (5) surface jet with entrainment from below. The initial tests produced an asymmetrical scour hole; however, a midstream flow divider or vane, made the scour hole more symmetrical. Two depressions were observed inside most of the symmetrical scour holes. It was found that the scour hole that forms immediately after the apron, which is referred to as the short-term scour, reaches an equilibrium depth within a few minutes of the start of flow while the scour hole formed farther from the apron (long-term scour) continues to increase, at a decreasing rate for several days. The short-term scour in a rectangular channel is caused mainly by the attached jet while the short-term scour in a trapezoidal channel is produced by the jet attachment and the drilling effect of the vertical vortices caused by the sudden enlargement at the end of the control structure. The short-term scour in a rectangular channel is found to be a function of the initial Froude number, the initial jet depth and the particle size. The long-term scour depth is caused by the wave jet or diving jet as well as the surface jet; the scour depth was found to be a function of time, densimetric Froude number, initial jet depth and particle size. The changes in the surficial size distribution and settling velocity were determined for short-term and long-term scour at various locations within and downstream of the scour hole. The Gumbel distribution yields a good fit to both fall diameter and mass based equivalent diameter particle frequency distribution. As the scour hole develops, the D$sb{50}$ decreases as does the ratio D$sb{90}$/D$sb{10}.$ An unsteady state short-term scour model was developed to predict the scour hole pattern and duration of phase 1 (attached jet). This model verified the rapid development of the short-term scour depth and reflected the observed effects of head, flow, and grain size. A steady state short-term scour model was developed to predict the scour hole dimensions immediately downstream of the apron. This model confirmed that the short-term scour depth is mainly a function of the initial Froude number, and initial jet depth, although it was found to be weakly dependent on the particle size. A theoretical consideration for the maximum long-term scour depth supports the concept that this depth is dependent on the densimetric Froude number, the jet expansion characteristics and the Shields constant.Dept. of Civil and Environmental Engineering. Paper copy at Leddy Library: Theses u26 Major Papers - Basement, West Bldg. / Call Number: Thesis1990 .M653. Source: Dissertation Abstracts International, Volume: 52-11, Section: B, page: 5976. Thesis (Ph.D.)--University of Windsor (Canada), 1990.
机译:在年度维护期之后,在调节器下游的运河重新注水期间,该运河的尾水深度很小,不足以在实心围裙内部产生水力跃变。这导致了运河床的严重局部冲刷问题。解决该问题的传统方法是将碎石放在冲孔中,以防止进一步冲刷。但是,这种方法尚未被证明是永久解决方案。为了研究该局部冲刷问题,构建了一个通风口调节器的物理模型,并使用非均匀的颗粒材料来模拟渠道。这项实验研究表明,冲刷孔区域有五种不同的流动形式,即:(1)附着在床层上的射流;(2)破碎波和不利的水力跳跃;(3)行进的水力跳跃;( 4)跳跳和潜水射流,以及(5)从下方夹带的表面射流。最初的测试产生了一个不对称的冲刷孔。但是,中流分流器或叶片使冲刷孔更加对称。在大多数对称冲孔内都观察到两个凹陷。已发现,在停机坪后立即形成的冲水孔(称为短期冲水)在流动开始后的几分钟内达到了平衡深度,而冲水孔则离停机坪更远(长学期冲刷数)持续增加,并持续几天下降。矩形通道中的短期冲刷主要是由附着的射流引起的,而梯形通道中的短期冲刷是由射流的附着和垂直涡旋的钻探效果所引起的,而垂直涡旋的钻探效果是由于尾端突然增大而引起的。控制结构。发现矩形通道中的短期冲刷是初始弗洛德数,初始射流深度和粒径的函数。长期冲刷深度是由波浪射流或潜水射流以及表面射流引起的。发现冲刷深度是时间,密度弗洛德数,初始射流深度和粒径的函数。确定了在冲刷孔内和下游各个位置的短期和长期冲刷的表面尺寸分布和沉降速度的变化。 Gumbel分布可以很好地拟合落径和基于质量的等效直径粒子频率分布。随着冲刷孔的增大,D $ sb {50} $随D $ sb {90} $ / D $ sb {10}的比率减小。$非稳态短期冲刷模型用于预测第一阶段的冲孔模式和持续时间(附加射流)。该模型验证了短期冲刷深度的快速发展,并反映了水头,水流和晶粒尺寸的观察效果。建立了稳态短期冲刷模型以预测停机坪下游的冲刷孔尺寸。该模型证实了短期冲刷深度主要是初始弗洛德数和初始射流深度的函数,尽管发现它与颗粒大小的相关性很小。对于最大长期冲刷深度的理论考虑支持以下概念:该深度取决于密度的弗洛德数,射流膨胀特性和Shields常数。土木与环境工程系。莱迪图书馆的纸质副本:论文主要论文-西楼地下室。 /电话:Thesis1990 .M653。资料来源:国际学位论文摘要,第52-11卷,第B部分,第5976页。论文(博士学位)-温莎大学(加拿大),1990年。

著录项

  • 作者

    Mohamed Mahmoud Samy.;

  • 作者单位
  • 年度 1990
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号