首页> 外文学位 >Microstructure and strength of a deformation processed aluminum-20%tin metal-metal composite.
【24h】

Microstructure and strength of a deformation processed aluminum-20%tin metal-metal composite.

机译:变形加工的20%锡金属-金属复合材料的组织和强度。

获取原文
获取原文并翻译 | 示例

摘要

An Al-20vol.% Sn metal-metal composite was deformation processed by extrusion, swaging, and wire drawing to a total true strain of 7.4, resulting in a microstructure with Sn filaments in an Al matrix. Both the size and spacing of the Sn filaments decreased as deformation processing progressed. Immediately after deformation, the Sn second phase showed a convoluted, ribbon-shaped filamentary morphology, but the Sn filaments spheroidized during prolonged storage at room temperature. The driving force for spheroidization is chemical potential gradient due to curvature difference along Sn filaments. A critical wavelength of lambda crit = 2piR can be used to determine the spheroidization tendency of Sn cylinder. When lambda > 2piR, spheroidization is predicted to occur.; The strength of these composites increased exponentially with the reduction in spacing of the Sn filaments. The relationship between UTS and deformation true strain is UTS = 72.6 exp(0.20eta). A Hall-Petch relationship between strength and filament spacing has been observed. Strengthening results from the filaments acting as barriers for dislocation motion.; The primary shape instability modes are cylinderization of ribbons, boundary splitting, spheroidization of cylinders, and edge spheroidization of ribbons. The determining factors dictating which mechanism is active are grain boundary energy, interfacial energy, and ribbon cross section aspect ratio.; The fiber texture was determined by orientation imaging microscopy to be 100> for Al and 001> for Sn. The 290 MPa ultimate tensile strength of the composite was greater than the rule-of-mixtures prediction. Comparisons are made with Al-Nb, Al-Ti and Al-Mg deformation processed metal metal composites and to various strengthening models for metal-metal composites.
机译:通过挤压,型锻和拉丝将Al-20vol。%Sn的金属-金属复合材料进行变形处理,使其总真实应变为7.4,从而在Al基体中形成具有Sn细丝的微结构。随着变形处理的进行,Sn丝的尺寸和间距均减小。变形后,Sn第二相立即显示出回旋的带状丝状形态,但在室温下长时间保存期间,Sn丝状化。球形化的驱动力是由于沿着Sn细丝的曲率差异引起的化学势梯度。 λcrit = 2piR的临界波长可用于确定Sn圆柱的球化趋势。当λ> 2piR时,预计会发生球化。这些复合材料的强度随着锡丝间距的减小而呈指数增长。 UTS与变形真实应变之间的关系为UTS = 72.6 exp(0.20eta)。已经观察到强度和长丝间距之间的霍尔-帕奇关系。长丝是位错运动的屏障,可增强强度。主要的形状不稳定性模式是带的圆柱化,边界分裂,圆柱体的球化和带的边缘球化。决定哪个机制起作用的决定因素是晶界能,界面能和薄带横截面纵横比。通过取向成像显微镜确定纤维质地对于Al为<100>并且对于Sn为<001>。复合材料的290 MPa极限抗拉强度大于混合物的预测规则。比较了Al-Nb,Al-Ti和Al-Mg变形加工的金属金属复合材料以及金属-金属复合材料的各种强化模型。

著录项

  • 作者

    Xu, Kai.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号