首页> 外文学位 >Effects of Noise and Vibration on the Solid to Liquid Fluidization Transition in Small Dense Granular Systems Under Shear.
【24h】

Effects of Noise and Vibration on the Solid to Liquid Fluidization Transition in Small Dense Granular Systems Under Shear.

机译:剪切作用下噪声和振动对小密颗粒系统中固液流化转变的影响。

获取原文
获取原文并翻译 | 示例

摘要

Granular materials exhibit bulk properties that are distinct from conventional solids, liq- uids, and gases, due to the dissipative nature of the inter-granular forces. Understanding the fundamentals of granular materials draws upon and gives insight into many fields at the current frontiers of physics, such as plasticity of solids, fracture and friction, com- plex systems such as colloids, foams and suspensions, and a variety of biological systems. Particulate flows are widespread in geophysics, and are also essential to many industries. Despite the importance of these phenomena, we lack a theoretical model that explains most behaviors of granular materials. Since granular assemblies are highly dissipative, they are often far from mechanical equilibrium, making most classical analyses inappli- cable. A theory for dilute granular systems exists, but for dense granular systems (by far the majority of granular systems in the real world) no comparable theory is accepted.;We approach this problem by examining the fluidization, or transition from solid to liquid, in dense granular systems. In this study, the separate effects of random noise and vibration on the static to flowing transition of a dense granular assembly under planar shear is studied numerically using soft contact particle dynamics simulations in two dimensions. We focus on small systems in a thin planar Couette cell, examining the bistable region while increasing shear, with varying amounts of random noise or vibration, and determine the statistics of the shear required for the onset of flow. We find that the applied power is the key parameter in determining the magnitude of the effects of the noise or vibration, with vibration frequency also having an influence. Similarities and differences between noise and vibration are determined, and the results compare favorably with a two phase model for dense granular flow.
机译:由于粒间力的耗散性质,粒状材料表现出不同于常规固体,液体和气体的体积性质。理解粒状材料的基本原理将吸引并洞悉当前物理前沿的许多领域,例如固体的可塑性,断裂和摩擦,复杂的系统(例如胶体,泡沫和悬浮液)以及各种生物系统。微粒流在地球物理学中很普遍,并且对于许多行业也是必不可少的。尽管这些现象很重要,但我们缺乏一个理论模型来解释大多数颗粒材料的行为。由于粒状组件具有很高的耗散性,因此它们通常远未达到机械平衡,因此无法进行大多数经典分析。存在稀颗粒系统的理论,但对于稠密颗粒系统(到目前为止,现实世界中大多数颗粒系统),没有可比的理论被接受。我们通过研究流化或从固体到液体的转变来解决这个问题。密集的颗粒系统。在这项研究中,使用二维的软接触粒子动力学模拟,数值研究了随机噪声和振动对平面剪切下致密颗粒组件的静态到流动过渡的单独影响。我们将重点放在薄的平面Couette单元中的小型系统上,在增加剪切的同时检查双稳态区域,并产生不同数量的随机噪声或振动,并确定流动开始所需的剪切统计量。我们发现,施加功率是确定噪声或振动影响大小的关键参数,振动频率也有影响。确定噪声和振动之间的异同,并将结果与​​致密颗粒流的两相模型进行比较。

著录项

  • 作者

    Melhus, Martin Frederic.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号