首页> 外文学位 >Vehicle control in full unsteady flow using surface measurements .
【24h】

Vehicle control in full unsteady flow using surface measurements .

机译:使用表面测量在完全非恒定流中的车辆控制。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation is the first comprehensive attempt to address a new engineering problem: control of a vehicle maneuvering in a full unsteady flow field. The approach to the solution is focused in three main areas: modeling of a vehicle maneuvering in a full unsteady flow field, control of a vehicle maneuvering in a full unsteady flow field, and synthesizing the unsteady fluid loads for use in vehicle control. To model a vehicle maneuvering in a full unsteady flow filed this dissertation develops the Coupled Fluid Vehicle (CFV) model in which the fluid, which is a sum of a finite number of spatially dependent velocity field whose contributions vary with time, is coupled to the vehicle rigid-body equations of motion. To control a vehicle maneuvering in a full unsteady flow field this dissertation develops the Fluid Compensation Control (FCC) strategy, which gives the control designer an opportunity to include the fluid states, in addition to the vehicle states, in the control law and an opportunity to balance reducing the fluid dynamic load through compensation and reducing the state error through regulation. To synthesize the unsteady fluid loads this dissertation has attempted to forward current work on the prediction of fluid loads from stagnation and separation point measurements by developing the Kutta principle, which says that the velocity around the vehicle is a smoothly varying function and that it is determined up to a multiplicative constant by its nodes (stagnation, separation, and reattachment points/lines), and by conducting an experiment in an attempt to determine the correlation of the fluid loads from the orientation and separation lines on a 3-dimensional bluff body.
机译:本文是解决新的工程问题的首次全面尝试:控制车辆在完全非恒定流场中的机动。该解决方案的方法集中在三个主要领域:建模在完全非恒定流场中的车辆;控制车辆在完全非恒定流场中的动作;以及合成不稳定流体载荷以用于车辆控制。为了模拟在完全非恒定流中操纵的车辆,本论文开发了耦合流体车辆(CFV)模型,其中流体是有限数量的空间相关速度场之和,其贡献随时间变化,该流体与速度场耦合。车辆刚体运动方程。为了控制车辆在完全非恒定流场中的机动,本文提出了流体补偿控制(FCC)策略,该策略为控制设计人员提供了将车辆状态之外的流体状态包括在控制律中的机会,并提供了机会通过补偿来减少流体动载荷,并通过调节来减少状态误差,从而达到平衡。为了合成非稳态流体载荷,本论文试图通过发展库塔原理,将当前工作从停滞和分离点测量中预测流体载荷,这表明车辆周围的速度是一个平稳变化的函数,并且可以确定通过其结点(停滞,分离和重新连接点/线),并通过进行实验来尝试确定三维载荷流体上的定向线和分离线的流体载荷之间的相关性,从而获得一个乘性常数。

著录项

  • 作者

    Levedahl, Blaine Alexander.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号