首页> 外文学位 >Multi-symplectic integrators for nonlinear wave equations.
【24h】

Multi-symplectic integrators for nonlinear wave equations.

机译:非线性波动方程的多辛积分器。

获取原文
获取原文并翻译 | 示例

摘要

Symplectic (area-preserving) integrators for Hamiltonian ordinary differential equations have shown to be robust, efficient and accurate in long-term calculations. In this thesis, we show how symplectic integrators have a natural generalization to Hamiltonian PDEs by introducing the concept of multi-symplectic partial differential equations (PDEs). In particular, we show that multi-symplectic PDEs have an underlying spatio-temporal multi-symplectic structure characterized by a multi-symplectic conservation law MSCL). Then multi-symplectic integrators (MSIs) are numerical schemes that preserve exactly the MSCL. Remarkably, we demonstrate that, although not designed to do so, MSIs preserve very well other associated local conservation laws and global invariants, such as the energy and the momentum, for very long periods of time. We develop two types of MSIs, based on finite differences and Fourier spectral approximations, and illustrate their superior performance over traditional integrators by deriving new numerical schemes to the well known 1D nonlinear Schrodinger and sine-Gordon equations and the 2D Gross-Pitaevskii equation. In sensitive regimes, the spectral MSIs are not only more accurate but are better at capturing the spatial features of the solutions. In particular, for the sine-Gordon equation we show that its phase space, as measured by the nonlinear spectrum associated with it, is better preserved by spectral MSIs than by spectral non-symplectic Runge-Kutta integrators. Finally, to further understand the improved performance of MSIs, we develop a backward error analysis of the multi-symplectic centered-cell discretization for the nonlinear Schrodinger equation. We verify that the numerical solution satisfies to higher order a nearby modified multi-symplectic PDE and its modified multi-symplectic energy conservation law. This implies, that although the numerical solution is an approximation, it retains the key feature of the original PDE, namely its multi-symplectic structure.
机译:哈密​​顿常微分方程的辛(保区)积分器在长期计算中显示出鲁棒性,高效性和准确性。在本文中,我们通过引入多辛的偏微分方程(PDE)的概念,展示了辛格积分器对汉密尔顿PDE的自然概括。特别是,我们表明多符号PDE具有潜在的时空多符号结构,其特征是多符号守恒律(MSCL)。然后,多符号积分器(MSI)是精确保留MSCL的数值方案。值得注意的是,我们证明,尽管MSI并非旨在这样做,但却可以在很长一段时间内很好地保存其他相关的本地保护法和全局不变性,例如能量和动量。我们基于有限差分和傅立叶频谱近似法开发了两种类型的MSI,并通过为著名的1D非线性Schrodinger和Sine-Gordon方程以及2D Gross-Pitaevskii方程推导新的数值方案,说明了它们优于传统积分器的性能。在敏感状态下,频谱MSI不仅更准确,而且在捕获解决方案的空间特征方面更好。特别是,对于正弦-戈登方程,我们表明,与其相关的非线性光谱所测量的,其相空间由光谱MSI所保存的比与光谱非辛格的Runge-Kutta积分器所保存的更好。最后,为了进一步了解MSI的性能,我们对非线性Schrodinger方程的多符号中心单元离散化进行了向后误差分析。我们验证了数值解满足较高阶附近修正的多符号PDE及其修正的多符号能量守恒定律。这意味着,尽管数值解是一个近似值,但它保留了原始PDE的关键特征,即其多辛结构。

著录项

  • 作者

    Islas, Alvaro Lucas.;

  • 作者单位

    Old Dominion University.;

  • 授予单位 Old Dominion University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 古生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号