首页> 外文学位 >In-situ catalytic upgrading of pyrolysis vapor.
【24h】

In-situ catalytic upgrading of pyrolysis vapor.

机译:热解蒸气的原位催化提质。

获取原文
获取原文并翻译 | 示例

摘要

The rising fuel prices, environmental concerns over the emission of greenhouse gases, and the limited availability of fossil fuels led to the current focus on developing alternative fuel sources that are sustainable and environmentally benign. Lignocellulosic biomass, due to its high carbon value, abundance and for being greenhouse gas neutral, is a promising alternative energy resource. Fast pyrolysis of lignocellulosic biomass produces high energy density liquid fuel, called bio-oil, which has the potential as transportation fuel. But, crude bio-oils are chemically complex liquids with high oxygen contents (40 % oxygen content), high viscosity, low pH, low thermal stability, and poor heating values (20 MJ/Kg). Therefore, bio-oils must be substantially upgraded (de-oxygenated) to highly stable, non-corrosive, and high calorific value liquid fuels prior to their use as transportation fuels.;This research was conducted to investigate the efficiency of various acid catalysts in upgrading (cracking) the oxygenated pine wood pyrolysis vapors to high quality liquid fuel. Initial catalyst screening studies proved that zeolite acidity and pore structure is essential for effective cracking of pyrolysis vapors. Low space velocities and moderate temperatures were found to be favorable for the de-oxygenation of pyrolysis vapors. Various zeolites were tested, of which HZSM-5 with low Si/Al ratio was found to be an effective cracking catalyst. But the use of zeolites resulted in poor liquid yields. Zeolites were promoted with transition metal ions in order to inhibit the secondary cracking reactions occurring on Brönsted acid sites. The metal-promoted bi-functional catalysts were found to be the most effective catalysts, among all the catalysts employed in this research, in promoting hydrocarbon forming reactions without adversely affecting the liquid yields. Catalyst coking was unavoidable but the addition of metal ions to zeolites lowered the extent of coking. TG analysis of used catalysts indicated that the catalysts can be regenerated by calcining at 600–650 °C.
机译:燃料价格上涨,对温室气体排放的环境关注以及化石燃料的有限供应,导致当前集中精力开发具有可持续性和环境友好性的替代燃料。木质纤维素生物质,由于其高碳价,丰富和温室气体中性,是一种有前途的替代能源。木质纤维素生物质的快速热解产生了高能量密度的液体燃料,称为生物油,具有作为运输燃料的潜力。但是,粗制生物油是具有高氧含量(40%氧含量),高粘度,低pH值,低热稳定性和较差的热值(20 MJ / Kg)的化学复杂液体。因此,在将生物油用作运输燃料之前,必须对其进行重大升级(脱氧)以使其成为高度稳定,无腐蚀性和高热值的液体燃料。;本研究旨在研究各种酸催化剂的效率。将含氧的松木热解蒸气提升(裂解)为优质液体燃料。初步的催化剂筛选研究证明,沸石的酸度和孔结构对于有效裂解热解蒸气至关重要。发现低的速度和适中的温度有利于热解蒸气的脱氧。测试了各种沸石,其中发现具有低Si / Al比的HZSM-5是有效的裂化催化剂。但是,使用沸石导致液体产率低。用过渡金属离子促进沸石的生长,以抑制在布朗斯台德酸位点发生的二次裂解反应。在本研究中使用的所有催化剂中,发现金属促进的双官能催化剂是最有效的催化剂,可促进烃形成反应,而不会不利地影响液体收率。催化剂的焦化是不可避免的,但是向沸石中添加金属离子降低了焦化程度。用过的催化剂的热重分析表明,可以通过在600–650°C下煅烧来再生催化剂。

著录项

  • 作者

    Guda, Vamshi Krishna.;

  • 作者单位

    Mississippi State University.;

  • 授予单位 Mississippi State University.;
  • 学科 Chemistry Physical.;Energy.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 238 p.
  • 总页数 238
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号