首页> 外文学位 >Reconfigurable system-on-chip architecture for neural signal processing.
【24h】

Reconfigurable system-on-chip architecture for neural signal processing.

机译:用于神经信号处理的可重配置片上系统架构。

获取原文
获取原文并翻译 | 示例

摘要

Analyzing the brain's behavior in terms of its neuronal activity is the fundamental purpose of Brain-Machine Interfaces (BMIs). Neuronal activity is often assumed to be encoded in the rate of neuronal action potential spikes. Successful performance of a BMI system is tied to the efficiency of its individual processing elements such as spike detection, sorting and decoding. To achieve reliable operation, BMIs are equipped with hundreds of electrodes at the neural interface. While a single electrode/tetrode communicates with up to four neurons at a given instant of time, a typical interface communicates with an ensemble of hundreds or even thousands of neurons. However, translation of these signals (data) into usable information for real-time BMIs is bottlenecked due to the lack of efficient real-time algorithms and real-time hardware that can handle massively parallel channels of neural data. The research presented here addresses this issue by developing real-time neural processing algorithms that can be implemented in reconfigurable hardware and thus, can be scaled to handle thousands of channels in parallel. The developed reconfigurable system serves as an evaluation platform for investigating the fundamental design tradeoffs in allocating finite hardware resources for a reliable BMI.;In this work, the generic architectural layout needed to process neural signals in a massive scale is discussed. A System-on-Chip design with embedded system architecture is presented for FPGA hardware realization that features (a) scalability (b) reconfigurability, and (c) real-time operability. A prototype design incorporating a dual processor system and essential neural signal processing routines such as real-time spike detection and sorting is presented. Two kinds of spike detectors, a simple threshold-based and non-linear energy operator-based, were implemented. To achieve real-time spike sorting, a fuzzy logic-based spike sorter was developed and synthesized in the hardware. Furthermore, a real-time kernel to monitor the high-level interactions of the system was implemented. The entire system was realized in a platform FPGA (Xilinx Virtex-5 LX110T). The system was tested using extracellular neural recordings from three different animals, a owl monkey, a macaque and a rat. Operational performance of the system is demonstrated for a 300 channel neural interface. Scaling the system to 900 channels is trivial.
机译:根据神经元活动来分析大脑的行为是脑机接口(BMI)的基本目的。通常假定神经元活动以神经元动作电位峰值的速率编码。 BMI系统的成功性能取决于其各个处理元素(例如尖峰检测,排序和解码)的效率。为了实现可靠的操作,BMI在神经接口处配备了数百个电极。虽然单个电极/四极体在给定的时间与多达四个神经元进行通信,但是典型的接口与数百甚至数千个神经元的集合进行通信。然而,由于缺乏有效的实时算法和实时硬件来处理大量并行的神经数据通道,将这些信号(数据)转换为实时BMI的可用信息成为瓶颈。这里提出的研究通过开发可以在可重新配置的硬件中实现的实时神经处理算法来解决此问题,因此可以扩展以并行处理数千个通道。所开发的可重配置系统可作为评估平台,用于研究为可靠的BMI分配有限的硬件资源时的基本设计折衷。在本工作中,讨论了处理大规模神经信号所需的通用体系结构。提出了一种具有嵌入式系统架构的片上系统设计,以实现FPGA硬件,该设计具有(a)可扩展性(b)可重配置性和(c)实时可操作性。提出了一个包含双处理器系统和基本神经信号处理例程(例如实时峰值检测和排序)的原型设计。实现了两种尖峰检测器,一种是基于阈值的简单方法,另一种是基于非线性能量算子的方法。为了实现实时尖峰排序,开发了一种基于模糊逻辑的尖峰排序器,并在硬件中进行了综合。此外,实现了用于监视系统高层交互的实时内核。整个系统在平台FPGA(Xilinx Virtex-5 LX110T)中实现。使用来自三种不同动物(猫头鹰猴,猕猴和大鼠)的细胞外神经记录对系统进行了测试。该系统的操作性能在300通道神经接口中得到了证明。将系统扩展到900个通道很简单。

著录项

  • 作者单位

    Temple University.;

  • 授予单位 Temple University.;
  • 学科 Biology Neuroscience.;Engineering Electronics and Electrical.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号