首页> 外文学位 >Silicon-germanium self-assembled quantum dot growth and applications in nanodevices.
【24h】

Silicon-germanium self-assembled quantum dot growth and applications in nanodevices.

机译:硅锗自组装量子点的生长及其在纳米器件中的应用。

获取原文
获取原文并翻译 | 示例

摘要

To achieve further scaling down of MOSFETs, single-electron devices utilizing the Coulomb blockade effect will likely be the basic element of future solid-state electronics. Silicon or SiGe quantum dots embedded in an insulator have potential application for room temperature operation of single-electron transistor and nonvolatile memory devices.; In first study, direct growth of Ge dots on insulators, such as nitrided oxides, which are suitable for tunneling oxides (3nm) in memory devices were achieved. Germanium dots were grown at different temperatures on various dielectric substrates, including Si3N4, SiO2, oxynitride, NH3-annealed oxynitride, NH3-annealed nitride, and N 2O-annealed nitrided oxide.; In second study, SiGe quantum dot growth between 500°C and 525°C using a Si2H6/GeH4/H2 based chemistry was studied. For dielectrics, both SiO2 and hafnium oxide (HfO 2), high-K gate dielectric which uses thicker layer for reduced leakage, improved resistance to boron diffusion, and better reliability characteristics were used. The growth of SiGe dots is limited by the GeH4 partial pressure, which determines the activation energy of disilane decomposition in the surface-reaction-limited regime and the number of hydrogen desorption sites on the substrate.; Finally, a SiGe dot floating-gate flash memory with HfO2 tunneling oxide was developed. Using SiGe dots and HfO2 tunneling oxide, which allows for a thicker physical oxide thickness than an equivalent SiO 2 tunneling oxide without sacrificing non-volatility, a low program/erase voltage as well as good endurance and charge retention characteristics can be achieved. (Abstract shortened by UMI.)
机译:为了进一步缩小MOSFET的尺寸,利用库仑阻挡效应的单电子器件将很可能成为未来固态电子产品的基本要素。嵌入绝缘体中的硅或SiGe量子点在单电子晶体管和非易失性存储器件的室温操作中具有潜在的应用前景。在第一项研究中,实现了Ge点在绝缘体(例如氮化氧化物)上的直接生长,该绝缘体适合于隧穿存储器件中的氧化物(3nm)。锗点在不同温度下在各种介电衬底上生长,包括Si 3 N 4 ,SiO 2 ,氧氮化物,NH 3 < / sub>退火的氧氮化物,NH 3 退火的氮化物和N 2 O退火的氮化氧化物。在第二项研究中,使用Si 2 H 6 / GeH 4 / H 在500°C至525°C之间生长SiGe量子点研究了基于> 2 的化学。对于电介质,SiO 2 和氧化ha(HfO 2 )是高K栅极电介质,它使用较厚的层来减少泄漏,提高对硼扩散的抵抗力和更好的可靠性使用特性。 SiGe点的生长受到GeH 4 分压的限制,GeH 4 分压决定了在表面反应受限状态下乙硅烷分解的活化能以及衬底上氢的解吸位点数量。最后,开发了具有HfO 2 隧穿氧化物的SiGe点浮栅闪存。使用SiGe点和HfO 2 隧穿氧化物,可实现比等效SiO 2 隧穿氧化物更厚的物理氧化物厚度,且不牺牲非易失性,低编程/擦除电压以及良好的耐久性和电荷保持特性。 (摘要由UMI缩短。)

著录项

  • 作者

    Kim, Dong-Won.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Materials Science.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.6277
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号