首页> 外文学位 >Fumed oxide-based nanocomposite polymer electrolytes for rechargeable lithium batteries.
【24h】

Fumed oxide-based nanocomposite polymer electrolytes for rechargeable lithium batteries.

机译:用于可再充电锂电池的气相氧化物基纳米复合聚合物电解质。

获取原文
获取原文并翻译 | 示例

摘要

Rechargeable lithium batteries are promising power sources for portable electronic devices, implantable medical devices, and electric vehicles due to their high-energy density, low self-discharge rate, and environmentally benign materials. However, the high reactivity of lithium metal limits the choice of electrolytes and impedes the commercialization of rechargeable lithium batteries. One way to tackle this problem is to develop electrolytes that are kinetically stable with lithium. Composite polymer electrolytes (CPEs) based on fumed oxides presented in this work are promising candidates for rechargeable lithium batteries.; These CPEs typically consist of a low molecular weight methyl-ended poly(ethylene oxide) (PEO) oligomer + lithium bis(trifluromethylsulfonyl)imide [LiN(CF 3SO2)2] (LiTFSI) + fumed oxides (fumed silica, alumina, titania, or nixed fumed silica/alumina). Electrochemical impedance spectroscopy (EIS), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy were employed to study Li transport of CPEs. Ionic conductivity is affected by fillers but does not vary significantly with filler type or surface chemistry. Inert fillers increase conductivity at temperatures below the melting point (Tm) of the electrolyte but decreases conductivity at temperatures above. Our rheological results show that electrolyte elasticity is increased upon addition of fillers and the extent of increase varies greatly with filler type: some effect physical gels while others produce suspensions, depending on the strength of interactions between surface groups of fillers. In addition, the interfacial stability between electrolyte and lithium metal is enhanced upon addition of fillers, as evidenced by the lower interfacial resistance at open-circuit, lower Li/Li cell potential, and less cell polarization during Li/Li cell cycling than those of the baseline liquid electrolyte. The lithium full-cell (Li + metal oxide cathode) cycling results also show improved cell capacity and capacity retention of composite electrolytes in comparison to the baseline liquid electrolytes.; In summary, our composite electrolytes are promising candidates for lithium battery applications with high room-temperature conductivity, good mechanical strength, stable interface between lithium metal and electrolytes, and reasonable capacity and capacity retention with optimized cathode compositions.
机译:可充电锂电池具有高能量密度,低自放电率和对环境有益的材料,因此成为便携式电子设备,可植入医疗设备和电动汽车的有前途的电源。然而,锂金属的高反应性限制了电解质的选择并阻碍了可再充电锂电池的商业化。解决该问题的一种方法是开发对锂动力学稳定的电解质。这项工作中提出的基于气相氧化物的复合聚合物电解质(CPE)是可再充电锂电池的有前途的候选材料。这些CPE通常由低分子量的甲基末端聚环氧乙烷(PEO)低聚物+双(三氟甲基磺酰基)酰亚胺锂[LiN(CF 3 SO 2 ] 2 ](LiTFSI)+气相氧化物(气相二氧化硅,氧化铝,二氧化钛或氧化的气相二氧化硅/氧化铝)。电化学阻抗谱(EIS),差示扫描量热法(DSC)和傅立叶变换红外光谱法用于研究CPE的Li迁移。离子电导率受填料的影响,但不会随填料类型或表面化学性质而发生显着变化。惰性填料在低于电解质的熔点(T )的温度下会提高电导率,但在高于此温度时会降低电导率。我们的流变结果表明,添加填充剂后电解质的弹性会增加,并且增加的程度会随填充剂类型的不同而变化:某些影响物理凝胶,而另一些会产生悬浮液,具体取决于填充剂表面基团之间相互作用的强度。此外,添加填料后,电解质和锂金属之间的界面稳定性得到了增强,这比锂离子电池开路时的界面电阻低,锂/锂电池的电势低以及在锂/锂电池循环期间的电池极化小等证明了这一点。基线液体电解质。与基线液体电解质相比,锂全电池(Li +金属氧化物阴极)循环结果还显示出改善的电池容量和复合电解质的容量保持率。总而言之,我们的复合电解质具有较高的室温导电性,良好的机械强度,锂金属与电解质之间的稳定界面以及合理的容量和容量保持率(具有优化的阴极组成),是锂电池应用的有希望的候选者。

著录项

  • 作者

    Zhou, Jian.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 243 p.
  • 总页数 243
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号