首页> 外文学位 >Improving the performance of Escherichia coli KO11 during the fermentation of xylose to ethanol.
【24h】

Improving the performance of Escherichia coli KO11 during the fermentation of xylose to ethanol.

机译:在木糖发酵为乙醇的过程​​中提高大肠杆菌KO11的性能。

获取原文
获取原文并翻译 | 示例

摘要

The large-scale conversion of lignocellulose to fuel ethanol would greatly reduce the U.S. dependence on imported oil. To facilitate this need, Escherichia coli has been genetically engineered for the homofermentative production of ethanol from all constituent sugars of lignocellulose. However, high levels of complex nutrients are required for rapid fermentation of xylose, the second most abundant sugar in lignocellulose. With low levels of complex nutrients, the rate of xylose fermentation was limited by the growth of the biocatalyst. In a mineral salts medium containing 1% corn steep liquor as a nutrient source (90 g liter-1 xylose), growth was limited by an imbalance in the partitioning of carbon between ethanol production and biosynthetic pathways. Citrate synthase was shown to catalyze the specific growth-limiting reaction. The allosteric controls of citrate synthase regulate carbon flow through the oxidizing arm of the TCA pathway, ultimately producing 2-ketoglutarate and glutamate. Functionally expressing citrate synthase II(citZ) from Bacillus subtilis stimulated growth due to its different allosteric and kinetic properties. Acetyl-CoA served as an antagonist to the NADH-mediated allosteric inhibition of the E. coli citrate synthase. Supplementing the medium with pyruvate, acetate, acetaldehyde, 2-ketoglutarate or glutamate increased growth and ethanol production by activating, relieving or bypassing the allosteric regulation of the E. coli citrate synthase. Conservation of acetyl-CoA by mutating acetate kinase (Delta ackA) also increased growth and ethanol production, presumably by increasing the availability of acetyl-CoA (activating citrate synthase). In addition to biosynthetic needs, large intracellular pools of glutamate (>20 mM) function as a protective osmolyte. During growth in the high osmotic environment of the corn steep liquor medium containing 0.6 M xylose, intracellular glutamate was low (10 mM) and cells grew poorly, consistent with a glutamate deficiency. The addition of glutamate to the medium and all approaches that stimulated citrate synthase increased the high intracellular pool of glutamate during growth in this medium. Supplementing with other protective osmolytes, such as betaine and dimethylsulfoniopropionate, restored growth without affecting the intracellular pool of glutamate and appear to act directly as alternative osmolytes. These results indicate that the poor growth and ethanol production in 1% corn steep liquor medium (0.6 M xylose), the apparent requirement for high levels of nutrients without a specific auxotrophic requirement and the beneficial effects of increased intracellular glutamate all result from the requirement for high levels of protective osmolytes. Under these conditions, the growth of the biocatalyst (E. coli) and ethanol production are limited by insufficient levels of intracellular osmoprotectants rather than the synthesis of glutamate, per se.
机译:木质纤维素向燃料乙醇的大规模转化将大大减少美国对进口石油的依赖。为了满足这种需求,已经对大肠杆菌进行了基因工程改造,以从木质纤维素的所有组成糖中均质发酵生产乙醇。然而,木糖的快速发酵需要高水平的复杂营养素,木糖是木质纤维素中第二大含量的糖。由于复合营养素含量低,木糖发酵的速率受到生物催化剂生长的限制。在含有1%玉米浆作为营养源的矿物盐培养基(90克升-1木糖)中,乙醇的生产和生物合成途径之间碳分配的不平衡限制了其生长。柠檬酸合酶显示出催化特定的生长限制反应。柠檬酸合酶的变构控制可调节通过TCA途径氧化臂的碳流量,最终产生2-酮戊二酸和谷氨酸。枯草芽孢杆菌的功能性表达柠檬酸合酶II(citZ)由于其不同的变构和动力学特性而刺激了生长。乙酰辅酶A充当NADH介导的对柠檬酸合酶的变构抑制的拮抗剂。通过活化,缓解或绕过大肠杆菌柠檬酸合酶的变构调节,向培养基补充丙酮酸,乙酸盐,乙醛,2-酮戊二酸或谷氨酸可增加生长和乙醇产量。通过突变乙酸激酶(Delta ackA)来保护乙酰辅酶A,也可能通过增加乙酰辅酶A(激活柠檬酸合酶)的可用性来增加生长和乙醇产量。除了生物合成需求外,大量的谷氨酸细胞内池(> 20 mM)还可以用作保护性渗透压剂。在含有0.6 M木糖的玉米浸泡液培养基的高渗透环境中生长期间,细胞内谷氨酸含量低(<10 mM),细胞生长较差,与谷氨酸缺乏相一致。向培养基中添加谷氨酸盐和所有刺激柠檬酸合酶的方法均会增加在该培养基中生长期间谷氨酸盐的高细胞内池。补充其他保护性渗透剂,如甜菜碱和二甲基磺丙酸二甲酯,可以恢复生长,而不会影响细胞内谷氨酸池,并且似乎可以直接充当替代渗透剂。这些结果表明,在1%的玉米浸泡液培养基(0.6 M木糖)中生长和乙醇产量差,明显需要高水平营养素而又没有特定营养缺陷的需求以及细胞内谷氨酸盐增加的有益效果均来自于对谷氨酸的需求。高水平的渗透压保护剂。在这些条件下,生物催化剂(大肠杆菌)的生长和乙醇的生产受到细胞内渗透保护剂水平不足而不是谷氨酸合成的限制。

著录项

  • 作者

    Underwood, Stuart A.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Biology Microbiology.; Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学;环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号