首页> 外文学位 >Edge Structure Preserving Two-Dimensional and Three-Dimensional Image Denoising by Jump Surface Estimation.
【24h】

Edge Structure Preserving Two-Dimensional and Three-Dimensional Image Denoising by Jump Surface Estimation.

机译:通过跳跃表面估计保留二维和三维图像去噪的边缘结构。

获取原文
获取原文并翻译 | 示例

摘要

Image denoising is often used for pre-processing images so that subsequent image analyses are more reliable. Many existing methods can not preserve complicated edge-structures well, but those structures contain useful information about the image objects. So, besides noise removal, a good denoising method should preserve important edge-structures. The major goal of this dissertation is to develop image denoising techniques so that complicated edge-structures are preserved efficiently. The developed methods are based on nonparametric estimation of discontinuous surfaces, because a monochrome image can be regarded as a surface of the image intensity function and its discontinuities are usually at the outlines of the objects. The first part of this dissertation introduces some existing methods and related literature. Next, an edge-structure preserving 2-D image denoising technique is proposed, and it is shown that it performs well in many applications. The next part considers 3-D images. Because of emerging popularity of 3-D MRI images, 3-D image denoising becomes an important research area. The edge-surfaces in 3-D images can have much more complicated structures, compared to the edge-curves in 2-D images. So, direct generalizations of 2-D methods would not be sufficient. This part handles the challenging task of mathematically describing different possible structures of the edge-surfaces in 3-D images. The proposed procedures are shown to outperform many popular methods. The next part deals with the well-known bias issue in denoising MRI images that is corrupted with rician noise, and provides an efficient method to remove that bias. The final part of this dissertation discusses the future research directions along the line of previous parts. One of them is image denoising by appropriate multilevel local smoothing techniques so that the fine details of the images are well preserved.
机译:图像去噪通常用于预处理图像,以便后续图像分析更加可靠。许多现有方法不能很好地保留复杂的边缘结构,但是这些结构包含有关图像对象的有用信息。因此,除了消除噪声外,一种好的去噪方法还应保留重要的边缘结构。本文的主要目的是开发图像去噪技术,以有效地保留复杂的边缘结构。所开发的方法基于不连续表面的非参数估计,因为可以将单色图像视为图像强度函数的表面,并且其不连续性通常位于对象的轮廓处。本文的第一部分介绍了一些现有的方法和相关文献。接下来,提出了一种保留边缘结构的二维图像去噪技术,并且表明该技术在许多应用中表现良好。下一部分考虑3-D图像。由于3-D MRI图像的日益普及,因此3-D图像降噪成为重要的研究领域。与2D图像中的边缘曲线相比,3D图像中的边缘表面可以具有更为复杂的结构。因此,二维方法的直接概括是不够的。这部分处理具有挑战性的任务,即数学上描述3-D图像中边缘表面的不同可能结构。所建议的过程显示出优于许多流行的方法。下一部分将解决在因李斯噪声而损坏的MRI图像去噪方面的众所周知的偏差问题,并提供一种消除该偏差的有效方法。本文的最后部分按照前几部分讨论了未来的研究方向。其中之一是通过适当的多级局部平滑技术对图像进行去噪,以便很好地保留图像的精细细节。

著录项

  • 作者

    Mukherjee, Partha Sarathi.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Statistics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号