首页> 外文学位 >Spatial localization of mechanical stimuli and cellular responses during bone healing in vivo.
【24h】

Spatial localization of mechanical stimuli and cellular responses during bone healing in vivo.

机译:体内骨愈合过程中机械刺激和细胞反应的空间定位。

获取原文
获取原文并翻译 | 示例

摘要

With the long-term goal of elucidating how mechanical stimuli can direct skeletal tissue differentiation, this dissertation employed a combination of experimental and computational approaches to quantify the local mechanical environment and the corresponding cellular responses in multiple scenarios of bone healing. These scenarios included distraction osteogenesis, a clinical procedure that uses applied tension to promote formation of new bone tissue within a bone defect; and mechanically generated pseudoarthrosis, a procedure in which an applied bending motion is used to promote formation of cartilage within the defect. Use of these two procedures in conjunction with each other allowed a richer investigation of the effects of mechanical cues on formation of both bone and cartilage than would have been possible with either alone. The local mechanical environment was quantified principally by an experimental technique, digital image correlation, that allowed measurement of heterogeneous strain fields within and surrounding the defect site. In the case of the pseudoarthrosis model, finite element analysis was also employed, although with the caveat that the tissue material properties that were used as input were not measured experimentally but were instead given assumed values. The techniques used to quantify the cellular responses included in situ hybridization, immunohistochemistry and histology. A final method, nanoindentation, was used in this dissertation as a first step towards addressing the limitation of the finite element analyses that this dissertation and many other prior studies have use to estimate the local mechanical environment.;Results from the distraction osteogenesis model revealed that the heterogeneity in local strain fields was perhaps both a result and a cause of the existence of distinct zones of tissue phenotypes within the healing callus. In the pseudoarthrosis model in which cartilage formation was mechanically induced, substantial spatial variations in the mRNA expression of cartilage-related genes were found in the defect region, and the patterns of expressed cartilage genes were in agreement with the predicted distribution of candidate stimuli (e.g. octahedral shear strain, fluid flow and tensile strain). Lastly, a custom-designed nanoindentation protocol was developed for quantification of tissue-level mechanical property of regenerating callus tissues.;Taken together, these findings illustrate how variations in local mechanical cues can influence tissue formation and the molecular aspects of bone healing during skeletal repair. The experimental techniques developed in this project can serve as a powerful tool for investigation of a variety of different loading scenarios to study the mechanobiology of bone healing in vivo.
机译:为了阐明机械刺激如何引导骨骼组织分化的长期目标,本论文采用实验和计算方法相结合的方法来量化局部机械环境以及在多种骨愈合情况下相应的细胞反应。这些情况包括分心成骨,这是一种临床程序,利用施加的张力促进骨缺损内新骨组织的形成;以及机械产生的假性关节病,是通过施加弯曲运动来促进缺损内软骨形成的过程。与单独使用这两种方法相比,将这两种方法相互结合使用可以更全面地研究机械提示对骨骼和软骨形成的影响。主要通过实验技术(数字图像关联)对局部机械环境进行量化,从而可以测量缺陷部位内部和周围的异质应变场。在假性关节炎模型的情况下,也采用了有限元分析,但要注意的是,用作输入的组织材料特性不是通过实验测量的,而是被赋予了假定值。用于量化细胞反应的技术包括原位杂交,免疫组织化学和组织学。作为解决有限元分析的局限性的第一步,本论文采用了纳米压痕的最终方法,该方法是本论文和许多其他先前研究已用于估计局部力学环境的结果。局部应变场的异质性可能既是愈合愈伤组织中组织表型不同区域存在的结果又是原因。在机械诱导软骨形成的假性关节炎模型中,在缺损区域发现了与软骨相关的基因的mRNA表达的大量空间变化,并且表达的软骨基因的模式与预测的候选刺激分布相符(例如,八面体的剪切应变,流体流动和拉伸应变)。最后,开发了定制设计的纳米压痕规程,用于定量再生愈伤组织的组织水平机械特性。总而言之,这些发现说明了局部机械线索的变化如何影响组织形成以及骨骼修复过程中骨骼愈合的分子方面。 。在该项目中开发的实验技术可以用作研究各种不同负荷情况以研究体内骨骼愈合的力学生物学的有力工具。

著录项

  • 作者

    Leong, Pui Leng.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号