首页> 外文学位 >Multi-scale techniques in computational electromagnetics.
【24h】

Multi-scale techniques in computational electromagnetics.

机译:计算电磁学中的多尺度技术。

获取原文
获取原文并翻译 | 示例

摘要

The last several decades have experienced an extraordinarily focused effort on developing general-purpose numerical methods in computational electromagnetics (CEM) that can accurately model a wide variety of electromagnetic systems. In turn, this has led to a number of techniques, such as the Method of Moments (MoM), the Finite Element Method (FEM), and the Finite-Difference-Time-Domain (FDTD), each of which exhibits their own advantages and disadvantages. In particular, the FDTD has become a widely used tool for modeling electromagnetic systems, and since it solves Maxwell's equations directly---without having to derive Green's Functions or to solve a matrix equation or---it experiences little or no difficulties when handling complex inhomogeneous media. Furthermore, the FDTD has the additional advantage that it can be easily parallelized; and, hence, it can model large systems using supercomputing clusters. However, the FDTD method is not without its disadvantages when used on platforms with limited computational resources. For many problems, the domain size can be extremely large in terms of the operating wavelengths, whereas many of the objects have fine features (e.g., Body Area Networks). Since FDTD requires a meshing of the entire computational domain, presence of these fine features can significantly increase the computational burden; in fact, in many cases, it can render the problem either too time-consuming or altogether impractical to solve. This has served as the primary motivation in this thesis for developing multi-scale techniques that can circumvent many of the problems associated with CEM, and in particular with time domain methods, such as the FDTD.;Numerous multi-scale problems that frequently arise in CEM have been investigated in this work. These include: (1) The coupling problem between two conformal antennas systems on complex platforms; (2) Rigorous modeling of Body Area Networks (BANs), and some approximate human phantom models for path loss characterization; (3) Efficient modeling of fine features in the FDTD method and the introduction of the dipole moment method for finite methods; and, (4) Time domain scattering by thin wire structures using a novel Time-Domain-Electric-Field-Integral-Equation (TD-EFIE) formulation. Furthermore, it is illustrated, via several examples, that each problem requires a unique approach. Finally, the results obtained by each technique have been compared with other existing numerical methods for the purpose of validation.
机译:在过去的几十年中,人们特别致力于开发可精确建模各种电磁系统的计算电磁学(CEM)通用数值方法。反过来,这导致了许多技术,例如矩量法(MoM),有限元方法(FEM)和有限时域(FDTD),每种技术都有自己的优势。和缺点。特别地,FDTD已成为建模电磁系统的一种广泛使用的工具,由于它可以直接求解麦克斯韦方程组-无需导出格林函数或求解矩阵方程,或者-在处理时几乎没有困难复杂的非均匀介质。此外,FDTD还具有易于并行化的优势。因此,它可以使用超级计算集群为大型系统建模。但是,当在计算资源有限的平台上使用时,FDTD方法并非没有缺点。对于许多问题,在工作波长方面,域的大小可能会非常大,而许多对象具有良好的功能(例如,人体局域网)。由于FDTD需要对整个计算域进行网格划分,因此这些精细特征的存在会显着增加计算负担。实际上,在许多情况下,它可能使问题过于耗时或根本无法解决。这一直是本论文开发多尺度技术的主要动机,这些技术可以规避与CEM(尤其是时域方法)相关的许多问题,例如FDTD。 CEM已在这项工作中进行了调查。其中包括:(1)复杂平台上的两个共形天线系统之间的耦合问题; (2)人体区域网络(BAN)的严格建模,以及一些用于路径损耗表征的近似人体模型; (3)在FDTD方法中对精细特征进行有效建模,并引入偶极矩方法作为有限方法; (4)使用新颖的时域-电-场-积分方程(TD-EFIE)公式通过细线结构进行时域散射。此外,通过几个示例说明了每个问题都需要一种独特的方法。最后,为了验证的目的,将每种技术获得的结果与其他现有的数值方法进行了比较。

著录项

  • 作者

    Bringuier, Jonathan Neil.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号