首页> 外文学位 >Genome-wide organization of transcription machinery detected at single nucleotide resolution.
【24h】

Genome-wide organization of transcription machinery detected at single nucleotide resolution.

机译:以单核苷酸分辨率检测到转录组的全基因组组织。

获取原文
获取原文并翻译 | 示例

摘要

Gene expression plays an important role in control of cell growth and differentiation in eukaryotic cells. Many proteins control gene expression by interacting with each other or with specific DNA sequences on the genome. Thus, determining where these proteins bind to DNA in vivo is essential to understanding how they regulate gene expression in eukaryotes. Chromatin immunoprecipitation (ChIP-chip and ChIP-seq) is the most widely used method to identify where proteins bind throughout a genome. However, DNA contamination and DNA fragmentation heterogeneity produce erroneous binding locations and imprecision in mapping. Consequently, stringent data filtering produces missed binding locations.;To overcome these limitations, I have developed a ChIP-exo method by combining exonuclease digestion with ChIP. ChIP-exo allows us to map a vast majority of genomic protein-DNA interactions at near single nucleotide accuracy. In this dissertation, I present an unprecedented view into genome-wide binding of sequence-specific DNA-binding proteins from yeast to human using ChIP-exo. I find that binding sites become unambiguous and reveal diverse tendencies governing in vivo DNA binding specificity that include sequence variants, functionally distinct motifs, motif clustering, secondary interactions, and combinatorial modules within a compound motif.;Furthermore, I reveal the structural and positional organization of the eukaryotic transcription pre-initiation complex (PIC) across a genome. I use ChIP-exo to identify and probe the organization of ∼6,000 PICs at near single nucleotide resolution throughout the yeast genome. PICs, which include RNA polymerase (Pol) II and each general transcription factor (GTF), are precisely positioned around the transcription start site (TSS). Exonuclease patterns are entirely consistent with crystallographic models of the PIC, and are sufficiently precise to identify TATA-like elements at nearly all so-called TATA-less promoters. Their unambiguous detection may help distinguish bona-fide genes from transcriptional noise. Taken together, the work presented in this dissertation reveals a genome-wide organization of transcription machinery at near single nucleotide resolution and allows us a more complete assessment of regulatory networks in which transcription factors regulate gene expression.
机译:基因表达在真核细胞的细胞生长和分化控制中起重要作用。许多蛋白质通过彼此相互作用或与基因组上的特定DNA序列相互作用来控制基因表达。因此,确定这些蛋白质在体内与DNA结合的位置对于了解它们如何调节真核生物中的基因表达至关重要。染色质免疫沉淀(ChIP芯片和ChIP-seq)是鉴定蛋白质在整个基因组中结合的位置的最广泛使用的方法。但是,DNA污染和DNA片段异质性会产生错误的结合位点和作图上的不精确性。因此,严格的数据过滤会产生丢失的结合位置。为了克服这些限制,我通过将核酸外切酶消化与ChIP结合起来开发了一种ChIP-exo方法。 ChIP-exo使我们能够以接近单核苷酸的精度绘制绝大多数基因组蛋白质-DNA相互作用的图。在本文中,我对使用ChIP-exo从酵母到人的序列特异性DNA结合蛋白的全基因组结合提出了前所未有的见解。我发现结合位点变得明确,并揭示了控制体内DNA结合特异性的各种趋势,包括在复合基序中的序列变异,功能不同的基序,基序聚类,次级相互作用和组合模块。此外,我揭示了结构和位置组织基因组中的真核转录预起始复合物(PIC)的构建。我使用ChIP-exo在整个酵母基因组中以接近单核苷酸的分辨率鉴定并探测了约6,000个PIC的组织。 PIC(包括RNA聚合酶(Pol)II和每个通用转录因子(GTF))精确定位在转录起始位点(TSS)周围。核酸外切酶模式与PIC的晶体学模型完全一致,并且精确到足以在几乎所有所谓的不含TATA的启动子上识别TATA样元件。它们的明确检测可能有助于将真正的基因与转录噪声区分开。综上所述,本论文提出的工作揭示了全基因组范围内转录机制的组织,其转录机制接近单核苷酸,并且使我们能够更完整地评估转录因子调控基因表达的调控网络。

著录项

  • 作者

    Rhee, Ho Sung.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Biology Molecular.;Biology Bioinformatics.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号