首页> 外文学位 >Surface physics modelling and evaluation of 6H-silicon carbide metal-oxide semiconductor field effect transistors with experimental corroboration.
【24h】

Surface physics modelling and evaluation of 6H-silicon carbide metal-oxide semiconductor field effect transistors with experimental corroboration.

机译:具有实验证实的6H-碳化硅金属氧化物半导体场效应晶体管的表面物理建模和评估。

获取原文
获取原文并翻译 | 示例

摘要

The relatively recent commercial availability of silicon carbide (SiC) wafers has significantly increased the possibility of electronics based on SiC metal-oxide-semiconductor field effect transistor (MOSFET) design. However, current state-of the-art SiC MOSFETs possess interface deformities that not only severally degrade SiC MOSFET performance but also complicate the modelling of the surface scattering mechanisms, rendering the conventional modelling techniques insufficient. At the time of this writing, little research towards developing tools that characterize the transport physics of experimentally observed SiC MOSFET behavior has been done. In this work I develop and implement a methodology capable of providing insight into the performance of this promising technology.; In order to bridge the gap between theoretical physics and real world experimentation, I have developed a simulation tool capable of solving the drift-diffusion heat flow equations specialized for SiC MOSFETs. The simulator utilizes techniques such as finite difference approximation, linear iteration, and the Smart Newton method. With this simulator I am able to determine and predict details about the surface transport that are not readily accessible using conventional experimental techniques. Using the methodology presented above, I have succeeded in developing a tool that characterizes the physical transport mechanisms indigenous to current state-of-the-art SiC MOSFETs and achieves agreement with experimental data. In short, the gap between theory and experiment has been bridged, and its results provide valuable insight into the roles of various surface scattering mechanisms, including interface trap occupation, surface roughness, and temperature effects.
机译:碳化硅(SiC)晶片的相对较新的商业可用性大大增加了基于SiC金属氧化物半导体场效应晶体管(MOSFET)设计的电子产品的可能性。但是,当前最先进的SiC MOSFET具有界面变形,这不仅会降低SiC MOSFET的性能,而且会使表面散射机制的建模复杂化,从而使传统的建模技术不足。在撰写本文时,针对开发表征实验观察到的SiC MOSFET行为的传输物理学的工具的研究很少。在这项工作中,我开发并实现了一种方法,该方法能够洞察这项有前途的技术的性能。为了弥合理论物理学和实际实验之间的差距,我开发了一种仿真工具,能够解决专用于SiC MOSFET的漂移扩散热流方程。该模拟器利用诸如有限差分逼近,线性迭代和Smart Newton方法之类的技术。使用此模拟器,我可以确定和预测有关使用传统实验技术不易获得的表面传输的细节。使用上面介绍的方法,我成功地开发了一种工具,该工具可表征当前最先进的SiC MOSFET固有的物理传输机制,并与实验数据达成一致。简而言之,已弥合了理论与实验之间的鸿沟,其结果为深入了解各种表面散射机制的作用提供了宝贵的见解,包括界面陷阱的占据,表面粗糙度和温度效应。

著录项

  • 作者

    Powell, Stephen Kirkman.;

  • 作者单位

    University of Maryland College Park.;

  • 授予单位 University of Maryland College Park.;
  • 学科 Engineering Electronics and Electrical.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号