首页> 外文学位 >Computer Simulation of Protein-like Copolymers (PLCs).
【24h】

Computer Simulation of Protein-like Copolymers (PLCs).

机译:蛋白质样共聚物(PLC)的计算机模拟。

获取原文
获取原文并翻译 | 示例

摘要

This thesis describes a computational investigation, using discontinuous molecular dynamics and kinetic Monte Carlo simulation, aimed at the development of protein-like copolymers (PLCs) as compatibilizing agents for polymer blends, and as "drug" delivery agents.;Protein-like copolymers (PLCs) represent a new type of functional copolymer, that exhibit large-scale compositional heterogeneities and long-range statistical correlations along the co-monomer sequence. The concept of PLCs was first introduced by Khokhlov and coworkers who demonstrated using computer simulations that random copolymers with tunable monomer sequences (RCPs) could be generated by adjusting the compactness of a parent homopolymer composed of component A, and then converting exposed segments on the exterior of the coil into B segments by reacting them with specific chemical species in the surrounding solution.;We employed two computer simulation methods to investigate the role of PLCs as interfacial compatibilizers for a polymer blend containing two immiscible homopolymers. We used large-scale equilibrium discontinuous molecular dynamics (DMD) simulations to explore the effect of compatibilizer co-monomer sequence distribution on miscibility and interfacial characteristics of two incompatible homopolymers. Kinetic Monte Carlo (MC) simulations were used to study the phase separation dynamics of immiscible polymer blends compatibilized by PLCs. The effectiveness of PLCs to act as compatibilizers was compared with those of diblock, simple linear gradient, random, and alternating copolymers. The simulations indicated that for the chain lengths considered PLCs were better compatibilizers than alternating and random copolymers, acted at par with simple linear gradient copolymers, but were not as good as diblocks.;We employed kinetic Monte Carlo to investigate how adding ≈4.92% PLCs composed of segments of type C and D to an immiscible asymmetric A/B binary polymer blend containing 80% homopolymers of type A and 20% homopolymers of type B affected the phase separation dynamics. The ability of PLCs to slow down the phase separation process depended sensitively on the interaction energy between the PLCs and homopolymers, the PLC chain length, and the PLC chemical composition. PLCs compatibilized the binary blend more effectively as the attractive interaction between the PLC blocks and homopolymers increased. Nominal improvement in compatibilization of the binary blend was achieved with increasing PLC chain length. For a given interaction energy and chain length C/D PLCs with composition around 0.3 ≤ xC ≤ 0.5 (where xC is the mole fraction of the C component in the PLC) acted as the most effective compatibilizers. The growth of phase-separated domains followed a dynamical scaling law for both the A/B binary blend and PLC compatibilized A/C-D/B ternary blend in the late stages of phase separation. The universal scaling functions were nearly independent of the interaction energy, PLC chain length, and PLC chemical composition. The phase-separated domains grew with dynamical self-similarity irrespective of the type of PLC added to the binary blend, although the type of PLC significantly altered the growth rate of the phase-separated domains.;We also used kinetic Monte Carlo simulation to explore the role of PLCs as "drug" carriers. We examined the assembly of PLCs and delineated the conditions conducive to drug encapsulation. The effects of changes in the system volume fraction, PLC composition, and the strength and range of the interaction between the hydrophobic component of the PLC and the drug on the encapsulation efficiency was explored by performing cluster analysis and evaluating the density profiles of the PLC copolymer segments and those of the drugs. The presence of drug facilitated easier coil-to-globule transition for the PLCs. The interaction strength between the hydrophobic component of the PLC and the drug acted as a coupling parameter that determined whether the system encapsulated or whether the PLCs and drugs aggregated separately.
机译:本论文描述了使用不连续分子动力学和动力学蒙特卡洛模拟进行的计算研究,旨在开发蛋白质样共聚物(PLC)作为聚合物共混物的相容剂和“药物”递送剂。 PLC)代表了一种新型的功能性共聚物,它沿共聚单体序列具有大规模的组成异质性和长期的统计相关性。 PLC的概念首先由Khokhlov及其同事提出,他们使用计算机模拟证明,通过调节由组分A组成的母体均聚物的紧密度,然后转化外部暴露的链段,可以生成具有可调单体序列(RCP)的无规共聚物。通过将它们与周围溶液中的特定化学物质反应,将线圈分为B段。;我们采用了两种计算机模拟方法来研究PLC作为包含两种不混溶均聚物的聚合物共混物的界面相容剂的作用。我们使用大规模平衡不连续分子动力学(DMD)模拟来探索增容剂共聚单体序列分布对两种不相容均聚物的互溶性和界面特性的影响。动力学蒙特卡洛(MC)模拟用于研究PLC增容的不混溶聚合物共混物的相分离动力学。将PLC用作增容剂的效果与二嵌段,简单线性梯度,无规和交替共聚物的效果进行了比较。模拟表明,对于所考虑的链长,PLCs比交替和无规共聚物更好的增容剂,与简单的线性梯度共聚物相同,但不如二嵌段。;我们使用动力学蒙特卡洛方法研究了如何添加≈ 4.92%由C型和D型链段到不溶混的不对称A / B二元聚合物共混物(包含80%的A型均聚物和20%的B型均聚物)组成的PLC影响了相分离动力学。 PLC减慢相分离过程的能力主要取决于PLC与均聚物之间的相互作用能,PLC链长和PLC化学成分。随着PLC嵌段与均聚物之间有吸引力的相互作用的增加,PLC使二元共混物更有效地相容。随着PLC链长的增加,二元共混物的相容性得到了名义上的改善。对于给定的相互作用能量和链长,C / D PLC的成分约为0.3≤xC≤0.5(其中xC是PLC中C成分的摩尔分数)是最有效的增容剂。在相分离的后期,A / B二元共混物和PLC相容的A / C-D / B三元共混物的相分离域的生长遵循动态缩放定律。通用缩放功能几乎与交互能量,PLC链长和PLC化学成分无关。不管添加到二元共混物中的PLC类型如何,相分离域都具有动态自相似性,尽管PLC的类型显着改变了相分离域的生长速率。 PLC作为“毒品”载体的角色。我们检查了PLC的组装,并描述了有利于药物封装的条件。通过进行聚类分析和评估PLC共聚物的密度分布图,探索了系统体积分数,PLC组成的变化以及PLC疏水成分与药物之间相互作用的强度和范围对包封效率的影响。和药物的细分。药物的存在使PLC的线圈到球更容易过渡。 PLC的疏水性成分与药物之间的相互作用强度充当决定系统是否封装或PLC和药物是否分别聚集的耦合参数。

著录项

  • 作者

    Malik, Ravish.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Chemical.;Physics Condensed Matter.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 271 p.
  • 总页数 271
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号