首页> 外文学位 >Biomimetic tactile sensor for object identification and grasp control.
【24h】

Biomimetic tactile sensor for object identification and grasp control.

机译:仿生触觉传感器,用于物体识别和抓握控制。

获取原文
获取原文并翻译 | 示例

摘要

We describe a biomimetic tactile sensor that is sensitive to the wide range of normal and shear forces encountered in robotic and prosthetic applications: Figure 1. It is intrinsically simple, robust, and easy to manufacture and repair. The elastomeric skin is resistant to wear, and possesses texture and tackiness similar to the properties of human skin that facilitate grip. The curved, deformable nature of biological finger tips provides mechanical features that are important for the manipulation of the wide variety of objects encountered naturally. Electrodes are distributed along the surface of the rigid core and all sensitive components are safely embedded within the core. By applying an alternating current to each contact, one can measure the impedance of each volumetric flow path from a given contact to a reference electrode. Several factors will affect the resting impedance of an electrode: electrode size, material, fill volume, skin geometry, excitation frequency and fluid resistivity.;Because the conductivity of the fluid or gel increases with temperature, a thermistor is incorporated for thermal compensation. Furthermore, the fluid can be heated; when objects contact the device heat will be transferred according to the thermal and geometric properties of the object. Thus material information about the object can be extracted using heat-flow information, as biological finger tips do.;A hydrophone (pressure sensor) can also be mounted to the fluid channel of the sensor to gather acoustic information about contacted objects. Objects that slip will produce a high-frequency stick-slip phenomenon between the skin and the object; these high-frequency vibrations will be transmitted through the fluid and can be measured by the hydrophone. Objects with textures and surface features finer than the resolution of the impedance sensors will also produce a similar acoustic phenomenon within the fluid as the sensor haptically explores objects (Fishel et al. 2008). We posit material information from texture can be gathered from these data as well.;Here we will show that it is necessary to possess all three sensing modalities in order to make an accurate assessment of object properties. For example, if heat-flow sensing is used to gather information about a contacted object's thermal properties, one must calibrate the data with the force sensing modality, because surface area of contact, point of contact, object geometry and time of contact all impact the heat-flow signature.;Structure of dissertation. This discussion is separated into six chapters. In chapter one we outline the specific problems we are trying to solve in tactile sensing, the state of the art and the requirements to solve those problems. In chapter two we discuss the decision making process regarding the material choices for the core, skin and fluid and how these choices lend to meeting the requirements and constraints outlined in chapter one. Chapter three continues the discussion by taking these material constraints and demonstrating how design considerations evolved into the fabrication and testing practices that produced simple prototypes to the current sensors ready to be equipped on mechatronic manipulanda. Chapter four explores the notion of how to use the data produced by the sensor's force detection modality. This chapter focuses on how machine learning and heuristics can be used to extract radius of curvature, point of application of force and explicit force vectors. This is done not only match commercial sensor usage, but to show that these data are in fact embedded in the non-linear processes of the BioTac. Chapter five is a validation of sensor performance on a prosthetic hand. This involves normal and tangential force extraction using a Kalman filter for a constrained grip control task. Chapter six consists of preliminary experiments to thermally characterize objects using the heat-flow sensing modality. The paper ends with a discussion of how this work fits into the field of haptics and how the tactile signals can be used for conscious feedback of sensation for a prosthetic, reflexive grip control for a mechatronic hand and object property identification algorithms for robotic systems. (Abstract shortened by UMI.)
机译:我们描述了一种仿生触觉传感器,它对机器人和假肢应用中遇到的大范围的法向力和剪切力敏感:图1.它本质上很简单,坚固并且易于制造和维修。弹性皮肤具有耐磨性,并具有类似于人类皮肤的易于抓握的质地和粘性。生物指尖的弯曲,可变形特性提供了机械特征,这些机械特征对于操纵自然遇到的各种物体非常重要。电极沿刚性芯的表面分布,所有敏感组件均安全地嵌入芯中。通过向每个触点施加交流电,可以测量从给定触点到参考电极的每个体积流路的阻抗。有几个因素会影响电极的静止阻抗:电极的尺寸,材料,填充量,皮肤的几何形状,激励频率和流体电阻率。由于流体或凝胶的电导率随温度的升高而增加,因此内置了热敏电阻以进行热补偿。此外,可以加热流体。当物体接触设备时,热量将根据物体的热和几何特性进行传递。因此,可以像生物指尖一样使用热流信息提取有关对象的物质信息。水听器(压力传感器)也可以安装到传感器的流体通道中,以收集有关接触对象的声学信息。滑动的物体会在皮肤和物体之间产生高频粘滑现象;这些高频振动将通过流体传播,并可由水听器测量。具有纹理和表面特征的物体要比阻抗传感器的分辨率更精细,因为传感器以触觉方式探索物体,也会在流体中产生类似的声音现象(Fishel等人,2008年)。我们还可以从这些数据中收集来自纹理的材料信息。在这里,我们将显示必须具有所有三种传感方式,以便对对象属性进行准确的评估。例如,如果使用热流感测来收集有关被接触物体热性质的信息,则必须使用力感测方式来校准数据,因为接触的表面积,接触点,物体的几何形状和接触时间都会影响物体的热性能。热流签名。;论文结构。该讨论分为六章。在第一章中,我们概述了我们在触觉感应中要解决的特定问题,最新技术水平以及解决这些问题的要求。在第二章中,我们讨论了有关岩心,表皮和流体材料选择的决策过程,以及这些选择如何满足第一章中概述的要求和约束。第三章通过讨论这些材料上的限制并说明设计考虑因素如何演变为制造和测试实践,从而为准备用于机电一体化的当前传感器生产简单的原型,从而继续进行讨论。第四章探讨了如何使用传感器测力模式产生的数据的概念。本章重点介绍如何使用机器学习和启发式方法来提取曲率半径,力的施加点和显式力矢量。这样做不仅符合商用传感器的使用,而且还表明这些数据实际上已嵌入到BioTac的非线性过程中。第五章验证了假肢上传感器的性能。这涉及使用卡尔曼滤波器进行法向和切向力提取,以执行受限的抓地力控制任务。第六章由初步实验组成,这些实验使用热流传感模式对物体进行热表征。本文最后讨论了这项工作如何适应触觉领域,以及如何将触觉信号用于有意识的感觉反馈,以对机器人系统的机电手和物体特性识别算法进行人工,自反性抓握控制。 (摘要由UMI缩短。)

著录项

  • 作者

    Wettels, Nicholas B.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Biomedical.;Engineering Robotics.;Computer Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 304 p.
  • 总页数 304
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号