首页> 外文学位 >An Analytical Approach to Efficient Circuit Variability Analysis in Scaled CMOS Design.
【24h】

An Analytical Approach to Efficient Circuit Variability Analysis in Scaled CMOS Design.

机译:规模化CMOS设计中有效电路可变性分析的分析方法。

获取原文
获取原文并翻译 | 示例

摘要

Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness, efficient methodology is required that considers effect of variations in the design flow. Analyzing timing variability of complex circuits with HSPICE simulations is very time consuming. This thesis proposes an analytical model to predict variability in CMOS circuits that is quick and accurate.;There are several analytical models to estimate nominal delay performance but very little work has been done to accurately model delay variability. The proposed model is comprehensive and estimates nominal delay and variability as a function of transistor width, load capacitance and transition time. First, models are developed for library gates and the accuracy of the models is verified with HSPICE simulations for 45nm and 32nm technology nodes. The difference between predicted and simulated sigma/mu for the library gates is less than 1%. Next, the accuracy of the model for nominal delay is verified for larger circuits including ISCAS'85 benchmark circuits. The model predicted results are within 4% error of HSPICE simulated results and take a small fraction of the time, for 45nm technology. Delay variability is analyzed for various paths and it is observed that non-critical paths can become critical because of Vth variation. Variability on shortest paths show that rate of hold violations increase enormously with increasing Vth variation.
机译:对于从45纳米开始的规模化技术,工艺变化变得越来越重要。变化的增加主要归因于随机的掺杂物波动,线边缘粗糙度和氧化物厚度波动。这些变化极大地影响了电路性能的所有方面,并对未来的稳健IC设计提出了巨大挑战。为了提高鲁棒性,需要一种有效的方法来考虑设计流程中变化的影响。用HSPICE仿真分析复杂电路的时序变化非常耗时。本文提出了一种快速,准确的预测CMOS电路可变性的分析模型。已有几种分析模型可用于估计标称延迟性能,但为精确地建模延迟可变性所做的工作很少。所提出的模型是全面的,并根据晶体管宽度,负载电容和过渡时间来估计标称延迟和可变性。首先,开发了用于库门的模型,并通过针对45nm和32nm技术节点的HSPICE仿真验证了模型的准确性。库门的预测sigma / mu与模拟sigma / mu之间的差异小于1%。接下来,针对包括ISCAS'85基准电路在内的较大电路验证了标称延迟模型的准确性。对于45nm技术,该模型的预测结果与HSPICE仿真结果的误差在4%以内,并且只花费一小部分时间。分析了各种路径的时延可变性,发现由于Vth变化,非关键路径会变得关键。最短路径的可变性表明,随着Vth变化的增加,保持违规率会大大增加。

著录项

  • 作者

    Gummalla, Samatha.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2011
  • 页码 72 p.
  • 总页数 72
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号