首页> 外文学位 >Nanoengineering of solid surfaces using an in-vitro synthesized biological polymer.
【24h】

Nanoengineering of solid surfaces using an in-vitro synthesized biological polymer.

机译:使用体外合成的生物聚合物对固体表面进行纳米工程。

获取原文
获取原文并翻译 | 示例

摘要

Polyhydroxyalkanotes (PHAs) are aliphatic polyesters produced by a wide range of microorganisms as intracellular carbon and energy storage compounds. PHA has received significant interest from industry and academia because it is a biocompatible and biodegradable thermoplastic with potential applications in consumer and medical products. One of the key enzymes in PHA biosynthesis is PHA synthase, which catalyzes the polymerization of 3-(R)-hydroxyacyl-CoA to poly (3-hydroxyalkanoate) [PHA].; In this work, different types of solid substrates, such as agarose, silicon and gold were modified by the in situ synthesis of PHA on the surface. In order to carry out these surface modifications, the PHA synthase from Ralstonia eutropha H16 was immobilized onto solid substrates through a transition-metal complex, Ni2+-nitrilotriacetic acid (Ni-NTA). Immobilized PHA synthase catalyzed the surface-initiated polymerization of 3-(R)-hydroxybutyryl-CoA, resulting in the formation of a polymer film on the surface. The immobilization of intact enzymes onto patterned silicon substrates was also conducted to demonstrate specific binding of the enzyme through a Ni-NTA linker. The subsequent polymerization within the patterned areas was characterized by fluorescent microscopy, atomic force microscopy, InfraRed spectroscopy and wide angle X-ray diffraction. In addition, the polymer growth on the gold surface was directly monitored by surface plasmon resonance (SPR). SPR experiments revealed the polymerization kinetics on the surface and the effect of enzyme concentration on the final film thickness. Significantly, the process of surface modifications could be reversed from “graft from” to “graft onto” by exploiting a unique characteristic of the catalytic mechanism of this enzyme. In PHA synthase, the polymer chain remains covalently attached to the synthase once synthesis has terminated, resulting in the formation of a highly stable polymer-protein complex structure. The introduction of a histidine tag to the protein thus allowed the polymer-protein complexes to be reversibly grafted onto Ni-NTA-coated surfaces. This work overall demonstrates how variable functional peptide units can be introduced into a polymeric material through genetic engineering and used for mediating specific biomolecular interactions with a given ligand or receptor.
机译:聚羟基链烷酸酯(PHA)是由多种微生物作为细胞内碳和能量存储化合物生产的脂肪族聚酯。由于PHA是一种生物相容性和可生物降解的热塑性塑料,在消费品和医疗产品中具有潜在的应用前景,因此受到了工业界和学术界的极大关注。 PHA生物合成中的关键酶之一是PHA合酶,它催化3-( R )-羟基酰基-CoA聚合成聚(3-羟基链烷酸酯)[PHA]。在这项工作中,通过在表面上PHA的原位合成来修饰不同类型的固体基质,例如琼脂糖,硅和金。为了进行这些表面修饰,将 Ralstonia eutropha H16的PHA合酶通过过渡金属络合物Ni 2 + -亚硝基三乙酸(Ni -NTA)。固定化的PHA合酶催化3-( R )-羟基丁酰基-CoA的表面引发的聚合反应,从而在表面形成聚合物膜。还进行了将完整酶固定在图案化的硅基板上的操作,以证明酶通过Ni-NTA接头的特异性结合。通过荧光显微镜,原子力显微镜,红外光谱和广角X射线衍射来表征图案化区域内的随后聚合。另外,通过表面等离子体激元共振(SPR)直接监测在金表面上的聚合物生长。 SPR实验揭示了表面上的聚合动力学以及酶浓度对最终膜厚的影响。重要的是,通过利用这种酶催化机制的独特特征,可以将表面修饰的过程从“从”移植到“移植到”上。在PHA合酶中,一旦合成终止,聚合物链将保持共价连接至合酶,从而形成高度稳定的聚合物-蛋白质复合物结构。因此,将组氨酸标签引入蛋白质中,可以使聚合物-蛋白质复合物可逆地嫁接到涂有Ni-NTA的表面上。这项工作总体证明了可变功能性肽单元如何通过基因工程引入聚合材料,并用于介导与给定配体或受体的特定生物分子相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号