首页> 外文学位 >Bidirectional plasticity supports learning and post-ischemic functional recovery in the rat striatum.
【24h】

Bidirectional plasticity supports learning and post-ischemic functional recovery in the rat striatum.

机译:双向可塑性支持大鼠纹状体的学习和缺血后功能恢复。

获取原文
获取原文并翻译 | 示例

摘要

While stroke-related deaths have decreased in recent years, stroke is still the leading cause of long-term disability in the United States. Adequate rehabilitation is dependant upon plasticity, a multidimensional and adaptive process underlying recovery of function in both the human and rodent brain. The complexity of processes underlying plasticity in the central nervous system is still largely unknown, but manipulating this spontaneous state of the healing brain is of the utmost importance as it will allow maximum therapeutic effect. Characterization of lesion-induced local and remote rewiring, initial behavioral deficit and their long-term relationships to behavioral outcome are required to fill some of the gaps in our understanding of brain repair mechanisms after stroke. The experiments outlined in this dissertation take advantage of hypothesized neuroplasticity foundations of learning and memory, as well as an established model of forelimb motor cortex injury in rats in order to examine changes in the striatal target regions of the disrupted and intact corticofugal tracts as well as within the uninjured homotopic sensorimotor cortex. Ultimately, these studies enhance those changes and their behavioral correlates through skilled training.;Our work investigates the molecular underpinnings of unilateral skilled reach task acquisition in the rat. The findings demonstrate that striatal shifts in glutamate receptor subunit phosphorylation and composition, known to support changes in synaptic strength and efficacy, accompany learning in an experience-dependent fashion. As task-specific rehabilitation is a critical component of stroke-related disability treatment, an increasing understanding of neurotransmission alterations that occur during novel motor sequence practice can play a valuable role in the pursuit of adjuvant therapies.;Results presented show that naive learning and post-ischemic re-learning share molecular support phenomena. Bi-directional (&agr;-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) AMPA and (N-methyl D-aspartate) NMDA receptor changes are associated with behavioral recovery from lesion-induced impairments in an ordinal and training-dependent manner. Substantial skilled task experience, likely accompanied by morphological growth at active corticostriatal synapses, allows glutamate receptor-modulated long-term plasticity thresholds to stabilize, thereby promoting an insaturable learning environment. While loss of cortical input to the denervated striatum is likely the source of abnormal patterns of glutamate receptor expression in the hemisphere subject to lesion, disregulated inhibition within the intact cortex may initiate these changes along the corticostriatal pathway of the non-injured hemisphere. Initial behavioral deficit is an indication of both extent of lesion and underlying neurotransmitter transmission and receptor expression.;Medium spiny neuron (MSN) synaptic plasticity can contribute to improved functional motor output variably in the context of different experimental paradigms. This flexibility is appropriate for the striatum's critical role in both motor learning and recovery, as it simultaneously promotes physiological adaptability and homeostasis. One of the fundamental sources of support for this elegant and malleable system may be the capacity for bi-directionality at glutamate receptors. Future studies will continue to uncover the potential for modifying these characteristics for use in innovative and effective clinical strategies.
机译:尽管近年来与中风相关的死亡人数有所减少,但中风仍然是美国长期残疾的主要原因。适当的康复取决于可塑性,这是人类和啮齿动物大脑功能恢复的多维和适应性过程。中枢神经系统可塑性的潜在过程的复杂性仍是未知之数,但是操纵这种自发性的大脑康复状态至关重要,因为它将最大程度地发挥治疗作用。为了弥补我们对中风后脑修复机制的理解的空白,需要对病变引起的局部和远端重新布线,初始行为缺陷及其与行为结果的长期关系进行表征。本论文概述的实验利用假设的学习和记忆神经可塑性基础,以及大鼠前肢运动皮层损伤的已建立模型,以检查受损和完整的皮质ugugal道的纹状体靶区域的变化,以及在未损伤的同位感觉运动皮层内。最终,这些研究通过熟练的训练增强了这些变化及其行为相关性。;我们的工作调查了大鼠单方面熟练到达任务获取的分子基础。这些发现表明,谷氨酸受体亚基的磷酸化和组成的纹状体转移伴随着经验依赖的学习,伴随着突触强度和功效的改变。由于特定于任务的康复是中风相关残疾治疗的关键组成部分,因此对新型运动序列练习期间发生的神经传递改变的认识的日益深入,可以在寻求辅助治疗中发挥重要作用。缺血再学习共享分子支持现象。双向(α-氨基-3-羟基-5-甲基-4-异恶唑丙酸)AMPA和(N-甲基D-天冬氨酸)NMDA受体变化与行为和损伤的行为恢复有关依赖的方式。大量熟练的工作经验,可能伴随着活动性皮质口突触的形态生长,使谷氨酸受体调节的长期可塑性阈值得以稳定,从而促进了不饱和的学习环境。虽然皮层输入缺失的纹状体很可能是受损伤的半球中谷氨酸受体表达异常模式的来源,但完整皮层内抑制失调可能会沿着未损伤半球的皮质口途径启动这些变化。最初的行为缺陷既可以指示病变的程度,也可以指示潜在的神经递质的传递和受体的表达。在不同的实验范式中,中性棘突神经元(MSN)突触可塑性可变量地改善运动功能。这种灵活性适合纹状体在运动学习和恢复中的关键作用,因为它同时促进了生理适应性和体内平衡。支持这种优雅且具有延展性的系统的基本来源之一可能是谷氨酸受体双向传递的能力。未来的研究将继续发现修改这些特征以用于创新有效的临床策略的潜力。

著录项

  • 作者

    Kent, Kelly Ann.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Biology Molecular.;Biology Neuroscience.;Psychology Behavioral Sciences.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号