首页> 外文学位 >Chemical Templating by AFM Tip-directed Nano-electrochemical Patterning.
【24h】

Chemical Templating by AFM Tip-directed Nano-electrochemical Patterning.

机译:通过AFM尖端定向纳米电化学图案化进行化学模板化。

获取原文
获取原文并翻译 | 示例

摘要

This work has examines the creation and use of chemical templates for nanocircuit and other nanodevice fabrication. Chemical templating can be useful in attachment, orientation and wiring of molecularly templated circuits. DNA origami provides a suitable method for creating molecularly templated circuits as DNA can be folded into complex shapes and functionalized with active circuit elements, such as semiconducting nanomaterials. Surface attachment of DNA origami structures can be accomplished by hybridization of dangling single-stranded DNA (ssDNA) on the origami structures with complementary surface-bound strands. Chemical templating provides a pathway for placing the patterned surface-bound attachment points needed for surface alignment of the molecular templates. Chemical templates can also be used to connect circuit elements on the surface by selectively metallizing the templates to form local wiring. AFM tip-directed nano-oxidation was selected as the method for patterning to create chemical templates. This project demonstrates new techniques for creating, continuous metallization of, and DNA attachment to nanochemical templates.;Selective-continuous metallization of nanochemical templates is needed for wiring of circuit templates. To improve the metallization density and enable the continuous nano-scale metallization of amine-coated surfaces, the treatment of amine-coated surfaces with a plating additive prior to metallization was studied. The additive treatment resulted in a 73% increase in seed material, enabling continuous nano-scale metallization. A new method was developed to create amine nanotemplates by selective attachment of a polymer to surface oxide patterns created by nano-oxidation. The treatment of the templates with the additive enabled a five-fold reduction in feasible width for continuous metallization. Nano-oxidation was also used in the nanometer-scale patterning of a thiol-coated surface. Metallization of the background thiols but not the oxidized patterns resulted in a metal film that was a negative of the patterns. The resulting metal film may be useful for nanometer-scale pattern transfer.;DNA-coated gold nanoparticles (AuNPs) were selectively attached to amine templates by an ionic interaction between the template and ssDNA attached to the particles. Only the ssDNA on the bottom of the AuNPs interacted with the template, leaving the top strands free to bind with complementary ssDNA. Attempts to attach origami structures to these particles were only marginally successful, and may have been hindered by the presence of complementary ssDNA in solution but not attached to the origami, or the by the low density of DNA-AuNPs attached to the templates. The formation of patterned binding sites by direct, covalent attachment of ssDNA to chemical templates was also explored. Initial results indicated that ssDNA was chemically bound to the templates and able to selectively bind to complementary strands; however, the observed attachment density was low and further optimization is required. Methods such as these are needed to enable nano-scale, site-specific alignment of nanomaterials.
机译:这项工作研究了用于纳米电路和其他纳米器件制造的化学模板的创建和使用。化学模板可用于分子模板电路的连接,定向和布线。 DNA折纸为创建分子模板化电路提供了一种合适的方法,因为可以将DNA折叠成复杂的形状并用有源电路元件(例如半导体纳米材料)进行功能化。 DNA折纸结构的表面附着可以通过在折纸结构上悬挂的单链DNA(ssDNA)与互补的表面结合链杂交来实现。化学模板提供了放置分子模板表面对齐所需的带图案的表面结合附着点的途径。通过选择性地金属化模板以形成局部布线,化学模板还可用于连接表面上的电路元件。选择AFM尖端导向的纳米氧化法作为图案化方法以创建化学模板。该项目演示了用于创建,连续金属化和将DNA附着到纳米化学模板的新技术。电路模板的布线需要纳米化学模板的选择性连续金属化。为了提高金属化密度并实现胺涂层表面的连续纳米级金属化,研究了在金属化之前用电镀添加剂处理胺涂层表面的方法。添加剂处理使种子材料增加了73%,从而实现了连续的纳米级金属化。通过将聚合物选择性附着到由纳米氧化产生的表面氧化物图案上,开发了一种新的方法来创建胺纳米模板。用添加剂处理模板可使连续金属化的可行宽度减小五倍。纳米氧化还用于硫醇涂层表面的纳米级图案化中。背景硫醇的金属化而不是氧化的图案的金属化导致金属膜成为图案的负片。所得的金属膜可用于纳米级图案转移。通过模板和附着在颗粒上的ssDNA之间的离子相互作用,将DNA包覆的金纳米颗粒(AuNP)选择性地附着在胺模板上。只有AuNPs底部的ssDNA与模板相互作用,而顶部链可自由与互补ssDNA结合。尝试将折纸结构连接到这些颗粒的尝试仅获得了少许成功,并且可能由于溶液中存在互补的ssDNA而没有折纸而受到阻碍,或者由于模板的DNA-AuNPs密度低而受到阻碍。还探讨了通过将ssDNA直接共价连接到化学模板上形成的结合位点。初步结果表明,ssDNA与模板化学结合,并能够选择性结合互补链。但是,观察到的附着密度低,需要进一步优化。需要使用诸如此类的方法来实现纳米材料的纳米级,特定位置对准。

著录项

  • 作者

    Nelson, Kyle A.;

  • 作者单位

    Brigham Young University.;

  • 授予单位 Brigham Young University.;
  • 学科 Engineering Chemical.;Nanotechnology.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号