首页> 外文学位 >Hierarchical approach to predicting transport properties of a gramicidin ion channel within a lipid bilayer.
【24h】

Hierarchical approach to predicting transport properties of a gramicidin ion channel within a lipid bilayer.

机译:预测脂质双层中短杆菌肽离子通道转运特性的分层方法。

获取原文
获取原文并翻译 | 示例

摘要

A hierarchical computational approach combining molecular dynamics and continuous Poisson-Nernst-Planck theory is developed in this study to simulate transport properties of the Gramicidin A (GA) ion channel within a DMPC (dimyristoyl phosphatidylcholine) lipid bilayer. The first part of this study adopts a hybrid molecular dynamics simulation to investigate the diffusion of Na + and K+ at different positions along the GA channel in both single- and double-occupied states. An analysis of the radial distribution functions suggests that the single-occupied state is more favorable for both Na+ and K+ ions than the double occupied state. In double-occupancy, K+ favors a state with six water molecules between the two ions, in which water-channel interactions play an important role. Self-diffusion coefficients for single Na+ and K + ions in the GA channel were determined from molecular dynamics (CHARMM force field) to be 4.71 x 10-7 cm2 s-1 and 6.22 x 10-7 cm 2 s-1, respectively. The Nernst-Einstein (N-E) relation gives maximum ionic conductivities of 37 pS and 49 pS for the single Na+ and K+ occupied GA channel, respectively. These values, have the same order of magnitudes as the experimental data and, therefore, suggest that the N-E relation is useful in predicting the conductivity of an ion channel from its diffusion coefficient.; The second half of the study implements a three-dimensional (3D) Poisson-Nernst-Planck (PNP) calculation to predict conductance of the GA channel in the DMPC membranes. No free parameters were used during the calculation. Partial charge distributions of the GA protein and lipid molecules are assigned using the Poisson-Boltzman module embedded in the CHARMM force field, and the diffusion coefficients obtained from the MD simulation are used. This study shows that DMPC electrostatics have significant influence on the channel conductivity. At low electrolyte concentrations, the channel can not be occupied by more than one monovalent cation. With varied diffusion coefficients along the channel, the 3D-PNP predictions replicate the experimental current-voltage relations for the channel immersed in an aqueous NaCl bath solution. Nernst potentials at two asymmetric salt conditions between two sides of membrane are also predicted to be in good agreement with theoretical values. The successful predictions for the GA system suggest that the MD and PNP simulations can be used to investigate ion transport in other biological ion channel systems.
机译:在这项研究中,开发了一种结合分子动力学和连续Poisson-Nernst-Planck理论的分层计算方法,以模拟DMPC(二肉豆蔻酰磷脂酰胆碱)脂质双层中Gramicidin A(GA)离子通道的传输特性。本研究的第一部分采用混合分子动力学模拟,研究了Na +和K +在单占据和双重占据状态下沿GA通道在不同位置的扩散。径向分布函数的分析表明,Na +和K +离子的单占据状态比双占据状态更有利。在双重占据中,K +倾向于在两个离子之间具有六个水分子的状态,其中水通道相互作用起着重要作用。根据分子动力学(CHARMM力场)确定GA通道中单个Na +和K +离子的自扩散系数分别为4.71 x 10-7 cm2 s-1和6.22 x 10-7 cm2 s-1。 Nernst-Einstein(N-E)关系为单个Na +和K +占据的GA通道给出的最大离子电导率分别为37 pS和49 pS。这些值与实验数据具有相同的数量级,因此,N-E关系可用于根据其扩散系数预测离子通道的电导率。研究的第二部分实施了三维(3D)泊松-能斯特-普朗克(PNP)计算,以预测DMPC膜中GA通道的电导率。在计算过程中未使用任何自由参数。使用嵌入在CHARMM力场中的Poisson-Boltzman模块分配GA蛋白和脂质分子的部分电荷分布,并使用从MD模拟获得的扩散系数。这项研究表明,DMPC静电对沟道电导率有重要影响。在低电解质浓度下,通道不能被一种以上的单价阳离子所占据。在沿着通道的扩散系数变化的情况下,3D-PNP预测复制了浸没在NaCl水溶液中的通道的实验电流-电压关系。膜两侧之间在两个不对称盐条件下的能斯特势也被预测与理论值良好吻合。 GA系统的成功预测表明,MD和PNP模拟可用于研究其他生物离子通道系统中的离子传输。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号