首页> 外文学位 >Integration and Goal-Guided Scheduling of Bottom-Up and Top-Down Computing Processes in Hierarchical Models.
【24h】

Integration and Goal-Guided Scheduling of Bottom-Up and Top-Down Computing Processes in Hierarchical Models.

机译:分层模型中自下而上和自上而下的计算过程的集成和目标指导调度。

获取原文
获取原文并翻译 | 示例

摘要

Accuracy performance and computational efficiency are two of the most important issues of object detection and parsing in computer vision, and the trade-off between them is usually guided by vision goals. In the literature, to improve accuracy performance, hierarchical models have been widely and successfully used, but often at the expense of increasing the computational burden largely. The explosion of computing costs would practically prevent a computer vision system from scaling to hierarchical models which consist of a large number of nodes. Meanwhile, hierarchical models are studied with zero-one loss used for nodes (i.e., loss cost-insensitive).;The goal of this thesis is to present a framework of integrating and scheduling bottom-up (BU) and top-down (TD) computing processes in a recursively defined hierarchical And-Or graph (AoG) to address, with a numerical study, the vision-goal-guided trade-off between accuracy performance and computational efficiency in both loss cost-insensitive and cost-sensitive situations.;The BU/TD computing processes consist of three types of processes identified for each node A in an AoG: (i) The alpha(A) process detects node A directly based on image features: (ii) The beta(A) process computes node A by binding its child node(s) bottom-up: and (iii) The gamma(A) process predicts node A top-down from its parent node(s). To evaluate their individual information contributions, the three processes are isolated and then trained separately. The learning of the three processes are formulated under the maximum likelihood estimation (MLE) framework. A numerical study of the information contribution is presented with both computer and human experiments. The experimental results show that the three processes contribute to computing node A from images in complementary ways in terms of scale and occlusion conditions.;To improve the accuracy performance, the alpha-beta-gamma computing processes are integrated by breadth-first search (BFS) in object parsing with AoG formulated under the Bayesian framework. The three processes are explicitly connected to the Bayesian inference and the dynamic programming (DP) implementation. With experiments on human face parsing and hierarchical image structure parsing, the results show performance improvement in the same manner consistent with their evaluated information contributions.;Next, to advance computational efficiency of learnt computing processes given allowable bounds on accuracy performance in cost-sensitive object detection, near-optimal decision policies are learnt for computing processes of terminal nodes and And-nodes by minimizing the corresponding risk function which explicitly takes into account the computational cost, the false negative (FN) and false positive (FP) loss costs.;Finally, a theoretical study is proposed to schedule all the alpha-beta-gamma computing processes in an AoG under the best, firstheuristic search framework to adapt computing orders of nodes in an AoG to different vision tasks and image datasets.
机译:准确度性能和计算效率是计算机视觉中对象检测和解析的两个最重要的问题,它们之间的权衡通常以视觉目标为指导。在文献中,为了提高精度性能,分层模型已被广泛成功地使用,但是通常以大大增加计算负担为代价。计算成本的爆炸式增长实际上将阻止计算机视觉系统扩展到由大量节点组成的分层模型。同时,研究了将零一损失用于节点(即损失成本不敏感)的层次模型。本论文的目的是提出一个自下而上(BU)和自上而下(TD)的集成和调度框架。 )以递归方式定义的分层“或”图(AoG)中的计算过程,以通过数值研究解决在损失成本不敏感和成本敏感的情况下,精度目标与计算效率之间的视觉目标指导权衡。 ; BU / TD计算过程包括为AoG中的每个节点A识别的三种类型的过程:(i)alpha(A)过程直接基于图像特征检测节点A:(ii)beta(A)过程计算节点A通过自下而上地绑定其子节点;和(iii)gamma(A)进程从其父节点开始自上而下地预测节点A。为了评估他们各自的信息贡献,将三个过程隔离开来,然后分别进行培训。这三个过程的学习是在最大似然估计(MLE)框架下制定的。信息贡献的数值研究通过计算机和人体实验进行了介绍。实验结果表明,这三个过程在比例和遮挡条件方面以互补的方式有助于从图像计算节点A .;为提高精度性能,通过广度优先搜索(BFS)集成了alpha-beta-gamma计算过程),以在贝叶斯框架下制定的AoG进行对象解析。这三个过程明确地与贝叶斯推理和动态编程(DP)实现相关。通过对人脸解析和分层图像结构解析的实验,结果显示出与所评估的信息贡献相同的方式上的性能改进。接下来,在成本敏感对象的精度性能允许范围内,提高学习的计算过程的计算效率检测时,通过最小化相应的风险函数来学习终端节点和与节点的计算过程的接近最优的决策策略,该风险函数明确考虑了计算成本,误报(FN)和误报(FP)损失成本。最后,提出了一项理论研究,以在最佳的,第一启发式搜索框架下安排AoG中的所有alpha-β-γ计算过程,以使AoG中的节点的计算顺序适应不同的视觉任务和图像数据集。

著录项

  • 作者

    Wu, Tianfu.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Statistics.;Computer science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号