首页> 外文学位 >Engineering new self-assembling biomaterials based on beta-sheet-forming peptides.
【24h】

Engineering new self-assembling biomaterials based on beta-sheet-forming peptides.

机译:基于形成β-折叠的肽工程化新的自组装生物材料。

获取原文
获取原文并翻译 | 示例

摘要

This thesis deals with the development of novel strategies for self-assembling biomaterials based on short β-sheet fibril-forming peptides. These materials are potentially useful for a variety of biomedical applications, including tissue engineering and controlled drug release, and several aspects of these materials have been explored in this thesis in an effort to improve their clinical utility. First, a strategy for rapidly and uniformly triggering peptide self-assembly was developed. Stimulus-sensitive liposomes were utilized to sequester salts and release them in response to stimuli such as warming to body temperature or exposure to near infra-red light. Triggered salt release in turn initiated rapid self-assembly of extravesicular peptide and the transformation of the peptide/liposome suspension from a solution to a hydrogel. We show that peptide self-assembly can be rapidly, uniformly, and specifically triggered, with the storage modulus increasing three orders of magnitude upon triggering. This rapid triggering strategy is potentially useful for injectable biomaterial applications. In the second research thrust, a self-assembling peptide was developed that also possessed enzymatic activity for the cross-linking enzyme tissue transglutaminase. We then utilized tissue transglutaminase to conjugate cell-interactive peptides to the self-assembled structure and investigated cell attachment to these functionalized scaffolds. Such a strategy is potentially useful for designing biospecific self-assembling scaffolds for tissue engineering or wound healing. In the final research focus, to modulate the nanostructure of the self-assembled fibrillar structures, we developed a series of self-assembling polyethylene glycol-conjugated peptides. We found that polyethylene glycol conjugation significantly altered fibril morphology, including width, length, and degree of lateral aggregation. As previous β-sheet fibrillar self-assembled materials have shown particular intransigence to such modification of the fibrillar structure, this strategy may be a useful route for tailoring the physical properties of these materials. As a whole, the strategies developed in this thesis address previous shortcomings of β-sheet peptide-based self-assembling materials in an effort to bring them closer to clinical application.
机译:本文研究了基于短β-折叠原纤维形成肽的生物材料自组装新策略的发展。这些材料可能对包括组织工程和药物释放控制在内的各种生物医学应用有用,并且在本论文中对这些材料的几个方面进行了研究,以提高其临床实用性。首先,开发了快速而均匀地触发肽自组装的策略。刺激敏感的脂质体用于隔离盐并响应刺激(例如升温至体温或暴露于近红外光)释放盐。触发的盐释放继而引发囊泡外肽的快速自组装以及肽/脂质体悬浮液从溶液到水凝胶的转化。我们表明,肽的自组装可以快速,统一和特定地触发,触发时存储模量增加三个数量级。这种快速触发策略可能对可注射生物材料应用有用。在第二个研究方向中,开发了一种自组装肽,该肽还具有交联酶组织转谷氨酰胺酶的酶活性。然后,我们利用组织转谷氨酰胺酶将细胞相互作用的肽缀合至自组装结构,并研究了细胞与这些功能化支架的结合。这种策略对于设计用于组织工程或伤口愈合的生物特异性自组装支架可能是有用的。在最终的研究重点中,为了调节自组装原纤维结构的纳米结构,我们开发了一系列自组装的聚乙二醇偶联肽。我们发现聚乙二醇偶联显着改变了原纤维形态,包括宽度,长度和侧向聚集度。由于先前的β-片状原纤维自组装材料对这种原纤维结构的修饰显示出特别的坚不可摧,该策略可能是调整这些材料的物理性质的有用途径。总体而言,本文提出的策略解决了以前基于β-sheet肽的自组装材料的缺点,旨在使它们更接近于临床应用。

著录项

  • 作者

    Collier, Joel Henderson.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 251 p.
  • 总页数 251
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号