首页> 外文学位 >Spare Block Cache Architecture to Enable Low-Voltage Operation.
【24h】

Spare Block Cache Architecture to Enable Low-Voltage Operation.

机译:备用块高速缓存体系结构可实现低电压操作。

获取原文
获取原文并翻译 | 示例

摘要

Power consumption is a major concern for modern processors. Voltage scaling is one of the most effective mechanisms to reduce power consumption. However, voltage scaling is limited by large memory structures, such as caches, where many cells can fail at low voltage operation. As a result, voltage scaling is limited by a minimum voltage (Vccmin), below which the processor may not operate reliably. Researchers have proposed architectural mechanisms, error detection and correction techniques, and circuit solutions to allow the cache to operate reliably at low voltages. Architectural solutions reduce cache capacity at low voltages at the expense of logic complexity. Circuit solutions change the SRAM cell organization and have the disadvantage of reducing the cache capacity (for the same area) even when the system runs at a high voltage. Error detection and correction mechanisms use Error Correction Codes (ECC) codes to keep the cache operation reliable at low voltage, but have the disadvantage of increasing cache access time. In this thesis, we propose a novel architectural technique that uses spare cache blocks to back up a set-associative cache at low voltage. In our mechanism, we perform memory tests at low voltage to detect errors in all cache lines and tag them as faulty or fault-free. We have designed shifter and adder circuits for our architecture, and evaluated our design using the SimpleScalar simulator. We constructed a fault model for our design to find the cache set failure probability at low voltage. Our evaluation shows that, at 485mV, our designed cache operates with an equivalent bit failure probability to a conventional cache operating at 782mV. We have compared instructions per cycle (IPC), miss rates, and cache accesses of our design with a conventional cache operating at nominal voltage. We have also compared our cache performance with a cache using the previously proposed Bit-Fix mechanism. Our result show that our designed spare cache mechanism is 15% more area efficient compared to Bit-Fix. Our proposed approach provides a significant improvement in power and EPI (energy per instruction) over a conventional cache and Bit-Fix, at the expense of having lower performance at high voltage.
机译:功耗是现代处理器的主要关注点。电压缩放是减少功耗的最有效机制之一。但是,电压缩放受到大型存储结构(例如高速缓存)的限制,在这种存储结构中,许多单元在低压操作下可能会发生故障。结果,电压缩放受到最小电压(Vccmin)的限制,低于此最小电压,处理器可能无法可靠地运行。研究人员提出了架构机制,错误检测和纠正技术以及电路解决方案,以允许高速缓存在低压下可靠地运行。架构解决方案降低了低电压下的缓存容量,但以逻辑复杂性为代价。电路解决方案改变了SRAM单元的组织,并且具有即使系统在高电压下运行也降低缓存容量(对于相同区域)的缺点。错误检测和纠正机制使用错误纠正码(ECC)代码来使高速缓存操作在低电压下保持可靠,但是具有增加高速缓存访​​问时间的缺点。在本文中,我们提出了一种新颖的架构技术,该技术使用备用缓存块在低电压下备份集关联缓存。在我们的机制中,我们在低电压下执行内存测试,以检测所有高速缓存行中的错误并将其标记为有故障或无故障。我们已经为我们的架构设计了移位器和加法器电路,并使用SimpleScalar模拟器评估了我们的设计。我们为我们的设计构建了一个故障模型,以查找低电压下的高速缓存集故障概率。我们的评估表明,在485mV的速度下,我们设计的缓存与在782mV的常规缓存具有相等的位故障概率。我们已经将设计的每个周期的指令(IPC),未命中率和缓存访问与在额定电压下运行的传统缓存进行了比较。我们还将缓存性能与使用先前提出的Bit-Fix机制的缓存进行了比较。我们的结果表明,与Bit-Fix相比,我们设计的备用缓存机制的区域效率提高了15%。我们提出的方法在功率和EPI(每条指令的能量)方面比传统的高速缓存和Bit-Fix有了显着改善,但以在高压下具有较低的性能为代价。

著录项

  • 作者

    Siddique, Nafiul Alam.;

  • 作者单位

    Portland State University.;

  • 授予单位 Portland State University.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2011
  • 页码 82 p.
  • 总页数 82
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号