首页> 外文学位 >Interplay of quantum confinement, electron-electron interactions, and terahertz radiation in indium gallium arsenide quantum posts and gallium arsenide quantum wells.
【24h】

Interplay of quantum confinement, electron-electron interactions, and terahertz radiation in indium gallium arsenide quantum posts and gallium arsenide quantum wells.

机译:砷化铟镓量子柱和砷化镓量子阱中的量子限制,电子-电子相互作用和太赫兹辐射之间的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Electron-electron interactions in semiconductor heterostructures are typically much weaker than the quantized energy spacings between their states. For materials with unusually small level spacings in the terahertz frequency range, however, these Coulomb interaction energies become comparable and can result in unique effects. Here, several systems are investigated in which these interactions play a major role.;InGaAs quantum posts are nanostructures with terahertz conduction level spacings. They are approximately cylindrical in shape, with heights in the range of 10-60 nm and diameters of ∼30 nm, and are embedded in an InGaAs quantum well of the same height. Here, the terahertz absorption of quantum posts is investigated when they contain their maximum allowable number of electrons. At this point, strong Coulomb repulsion in the posts prevents further charging, and the surrounding well is charged. Theoretical calculations show that absorption in this state is due to the "ionization" of charge from electronic states in the quantum posts to states in the surrounding quantum well. This ionizing transition, which otherwise would occur in the mid-IR band, is shifted to terahertz frequencies only because of a strong modification of the effective band structure of the quantum post and quantum well when highly charged. Ionization of these artificial atoms surrounded by an electron gas has no known analogue in atomic physics.;The use of quantum posts for quantum cascade lasers is also investigated. Quantum posts are integrated as the active region in a single period cascade structure. The UCSB Free Electron Laser, an intense quasi-CW source of terahertz radiation, is used to induce a resonant photocurrent as a method of characterization of charge injection and extraction in these structures.;Additionally, ultrafast spectroscopic techniques are used to determine the carrier capture times of quantum posts. Dynamics of charge pumped directly into the posts is also investigated, resulting in time and pump wavelength dependent absorption behavior that show complex charge dynamics.;Finally, the response of asymmetric quantum wells to intense terahertz fields is investigated, with a goal of finding a period-doubling bifurcation in the electromagnetic response. Period doubling is expected to occur in this system due to the strong Coulomb interaction of charge in the asymmetric well, which introduces nonlinearity into the equations of motion. Extensive simulations are performed to model the period doubling emission response, and an optimal well design is found. Experimental investigations of this effect in real samples are performed with the Free Electron Lasers at UCSB and in Dresden.
机译:半导体异质结构中的电子-电子相互作用通常比其状态之间的量化能量间隔弱得多。但是,对于在太赫兹频率范围内具有不寻常的水平间距的材料,这些库仑相互作用能变得可比并且可以产生独特的效果。在这里,研究了其中这些相互作用起主要作用的几个系统。InGaAs量子柱是具有太赫兹传导能级间距的纳米结构。它们的形状近似为圆柱形,高度在10-60 nm范围内,直径约30 nm,并嵌入相同高度的InGaAs量子阱中。在这里,当量子柱包含其最大允许电子数时,将对它们的太赫兹吸收进行研究。此时,柱子中强烈的库仑排斥力阻止了进一步充注,周围的井也充了电。理论计算表明,在此状态下的吸收是由于电荷从量子柱中的电子状态到周围的量子阱中的状态“电离”所致。这种电离跃迁原本会在中红外波段发生,但仅在高度充电时才对量子柱和量子阱的有效能带结构进行了强烈修改,因此才移至太赫兹频率。这些被电子气包围的人造原子的电离在原子物理学中尚无类似的模拟方法;也研究了将量子柱用于量子级联激光器。量子柱被集成为单个周期级联结构中的有源区域。 UCSB自由电子激光器是太赫兹辐射的强准连续波源,可用来引发共振光电流,作为表征这些结构中电荷注入和提取的方法。此外,超快光谱技术用于确定载流子捕获量子职位的时间。还研究了直接泵入柱中的电荷的动力学,从而导致了与时间和泵浦波长相关的吸收行为,这些行为表现出复杂的电荷动力学。最后,研究了非对称量子阱对强太赫兹场的响应,目的是寻找一个周期电磁响应中的分叉增加一倍。由于非对称井中电荷的强大库仑相互作用,预计该系统中的周期会加倍,这会将非线性引入运动方程。进行了广泛的模拟以模拟周期倍增的排放响应,并找到了最佳的井设计。在UCSB和德累斯顿使用自由电子激光器对实际样品中的这种效应进行了实验研究。

著录项

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Physics Quantum.;Physics Condensed Matter.;Physics Radiation.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号