首页> 外文学位 >Nano-ingenierie de bande interdite des semiconducteurs quantiques par recuit thermique rapide au laser.
【24h】

Nano-ingenierie de bande interdite des semiconducteurs quantiques par recuit thermique rapide au laser.

机译:快速激光热退火禁止将纳米带工程用于量子半导体。

获取原文
获取原文并翻译 | 示例

摘要

The ability to fabricate semiconductor wafers with spatially selected regions of different bandgap material is required for the fabrication of monolithic photonic integrated circuits (PIC's). Although this subject has been studied for three decades and many semiconductor engineering approaches have been proposed, the problem of achieving reproducible results has constantly challenged scientists and engineers. This concerns not only the techniques relaying on multiple sequential epitaxial growth and selective area epitaxy, but also the conventional quantum well intermixing (QWI) technique that has been investigated as a post-growth approach for bandgap engineering. Among different QWI techniques, those based on the use of different lasers appear to be attractive in the context of high-precision and the potential for cost-effective bandgap engineering. For instance, a tightly focused beam of the infrared (IR) laser could be used for the annealing of small regions of a semiconductor wafer comprising different quantum well (QW) or quantum dot (QD) microstructures. The precision of such an approach in delivering wafers with well defined regions of different bandgap material will depend on the ability to control the laser-induced temperature, dynamics of the heating-cooling process and the ability to take advantage of the bandgap engineering diagnostics.;In the frame of this thesis, I have investigated IR laser-induced QWI processes in QW wafers comprising GaAs/A1GaAs and InP/InGaAsP microstructures and in InAs QD microstructures grown on InP substrates. For that purpose, I have designed and set up a 2-laser system for selective area rapid thermal annealing (Laser-RTA) of semiconductor wafers. The advantage of such an approach is that it allows carrying out annealing with heating-cooling rates unattainable with conventional RTA techniques, while a tightly focused beam of one of the IR lasers is used for 'spot annealing'. These features have enabled me to introduce a new method for iterative bandgap engineering at selected areas (IBESA) of semiconductor wafers. The method proves the ability to deliver both GaAs and InP based QW/QD wafers with regions of different bandgap energy controlled to better than +/- 1nm of the spectral emission wavelength. The IBESA technique could be used for tuning the optical characteristics of particular regions of a QW wafer prepared for the fabrication of a PIC. Also, this approach has the potential for tuning the emission wavelength of individual QDs in wafers designed, e.g., for the fabrication of single photon emitters.;In the 1st Chapter of the thesis, I provide a short review of the literature on QWI techniques and I introduce the Laser -- RTA method. The 2nd Chapter is devoted to the description of the fundamental processes related to the absorption of laser light in semiconductors. I also discuss the results of the finite element method applied for modeling and semi-quantitative description of the Laser -- RTA process. Details of the experimental setup and developed procedures are provided in the 3 rd Chapter. The results concerning direct bandgap engineering and iterative bandgap engineering are discussed in the 4th and 5th Chapters, respectively.;Keywords: quantum well intermixing, laser bandgap engineering, laser rapid thermal annealing, monolithically integrated photonic circuits, quantum dot tuning.
机译:对于制造单片光子集成电路(PIC),要求具有制造具有不同带隙材料的空间选择区域的半导体晶片的能力。尽管已经研究了该主题三十年,并且已经提出了许多半导体工程方法,但是获得可再现结果的问题不断挑战着科学家和工程师。这不仅涉及基于多个连续外延生长和选择性区域外延的技术,而且还涉及作为带隙工程的生长后方法进行研究的常规量子阱混合(QWI)技术。在不同的QWI技术中,基于高精度激光器以及具有成本效益的带隙工程技术的潜力,基于使用不同激光器的技术似乎很有吸引力。例如,可以将紧密聚焦的红外(IR)激光束用于对包含不同量子阱(QW)或量子点(QD)微结构的半导体晶圆的小区域进行退火。这种方法在传送带有不同带隙材料的明确定义区域的晶片时的精度将取决于控制激光感应温度的能力,加热-冷却过程的动力学以及利用带隙工程诊断的能力。在本论文的框架内,我研究了包括GaAs / AlGaAs和InP / InGaAsP微结构在内的QW晶片以及在InP衬底上生长的InAs QD微结构中红外激光诱导的QWI工艺。为此,我设计并设置了2激光系统,用于半导体晶圆的选择性区域快速热退火(Laser-RTA)。这种方法的优点是,它允许以常规RTA技术无法达到的加热-冷却速率进行退火,而将IR激光器之一的紧密聚焦光束用于“点退火”。这些功能使我能够介绍一种在半导体晶圆的选定区域(IBESA)上进行带隙迭代工程的新方法。该方法证明了具有基于GaA和InP的QW / QD晶圆的能力,这些晶圆具有不同的带隙能量区域,并控制在光谱发射波长的+/- 1nm以上。 IBESA技术可用于调整为制造PIC而准备的QW晶圆特定区域的光学特性。同样,这种方法也有可能调整设计的晶圆中单个QD的发射波长,例如,用于制造单光子发射器。;在论文的第一章中,我简要回顾了有关QWI技术的文献,以及我介绍了Laser-RTA方法。第二章专门介绍与半导体中激光吸收有关的基本过程。我还将讨论用于激光-RTA流程建模和半定量描述的有限元方法的结果。第3章提供了实验设置和开发过程的详细信息。第4章和第5章分别讨论了直接带隙工程和迭代带隙工程的结果。关键词:量子阱混合,激光带隙工程,激光快速热退火,单片集成光子电路,量子点调谐。

著录项

  • 作者单位

    Universite de Sherbrooke (Canada).;

  • 授予单位 Universite de Sherbrooke (Canada).;
  • 学科 Engineering Materials Science.;Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号