首页> 外文学位 >Active foveal object recognition system.
【24h】

Active foveal object recognition system.

机译:主动中央凹物体识别系统。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents a software prototype of an active foveal object recognition and tracking system. It explores the use of an active object recognition framework which employs a rectilinear foveal vision sensor structure for robust, reliable, and efficient performance in the 2-D object recognition, 3-D object recognition, and 3-D tracking settings. The study uses the polygon data structure, which corresponds to the available subset of the traditional image pyramid when a rectilinear exponential focal plane array is used. The polygon is used to represent image data captured from the foveal vision sensor efficiently and permit traditional shift-invariant data processing independently and in parallel at each polygon level.;The investigation starts with recognition in the 2-D setting, for which the bounding contour feature set of an object is represented in a multiresolution fashion. A prediction-correction next-look generation algorithm is developed to determine a sequence of saccades to search for a recognizable object. Validation of the initial hypothesis is accomplished by the partial match of a subset of detail features around the contour. Overlap and occlusion are treated by shape decomposition into convex components and matching is done on convex parts.;The study next turns to the recognition of 3-D objects from active image sequences. Given view ambiguity among different object classes, a smart view planning module is introduced to purposively select the optimal next viewpoint to resolve the problem. A motion control scheme for the foveal vision sensor is developed to fixate the object while moving. Feature integration is implemented not only within the same view of the object but among different views.;Tracking systems need both high resolution in a small target region of interest, and a large field of view (FOV) to prevent loss of track. For this, a foveal imaging system is naturally well suited, combining as it does a high resolution region in the fovea with gradually reduced resolution outside the fovea. A foveal active vision system capable of detecting an independently moving object, and maintaining the object centered in the FOV is therefore next addressed. Independent motion detection is launched in the peripheral region using hierarchical motion model analysis while identifying and compensating for ego-motion of the vision sensor. Then via one or more saccades, the object is captured at the fovea of the sensor and maintained tracking afterwards.;Results of this design approach are shown for sets of test objects cast into virtual 2-D and 3-D environments for purposes of active foveal recognition and tracking. These results encourage consideration of such a scheme for robotic or autonomous vehicle navigation applications.
机译:本文提出了一种主动中央凹目标识别与跟踪系统的软件原型。它探讨了主动对象识别框架的使用,该框架采用直线凹道视觉传感器结构,可在2-D对象识别,3-D对象识别和3-D跟踪设置中实现强大,可靠和高效的性能。该研究使用了多边形数据结构,当使用直线指数焦平面阵列时,该数据结构对应于传统图像金字塔的可用子集。多边形用于有效地表示从中央凹视觉传感器捕获的图像数据,并允许在每个多边形级别独立且并行地进行传统的位移不变数据处理。;研究始于在二维设置中识别边界轮廓对象的特征集以多分辨率方式表示。开发了预测校正下一个生成算法,以确定搜索到可识别对象的扫视序列。初始假设的验证是通过轮廓周围细节特征子集的部分匹配来完成的。重叠和遮挡通过形状分解处理成凸形组件,然后在凸形部分上进行匹配。;下一步研究是从活动图像序列中识别3D对象。给定不同对象类之间的视图歧义性,引入了智能视图计划模块以有目的地选择最佳的下一视点以解决问题。中央凹视觉传感器的运动控制方案已开发出来,可在移动时固定物体。不仅在对象的同一视图内而且在不同视图之间也实现了功能集成。跟踪系统既需要在较小的目标目标区域中提供高分辨率,又需要较大的视野(FOV)以防止轨迹丢失。为此,一个中央凹成像系统自然很适合,因为它在中央凹的高分辨率区域与中央凹外部的分辨率逐渐降低相结合。因此,接下来将提出一种中央凹主动视觉系统,该系统能够检测独立移动的物体并保持该物体居中在FOV的中心。使用分层运动模型分析在外围区域中启动独立运动检测,同时识别并补偿视觉传感器的自我运动。然后,通过一个或多个扫视,在传感器的中央凹处捕获对象,并随后保持跟踪。;该设计方法的结果显示了将一组测试对象投放到虚拟2-D和3-D环境中以进行活动的目的中央凹识别和跟踪。这些结果鼓励考虑将这种方案用于机器人或自动车辆导航应用。

著录项

  • 作者

    Lu, Qiang.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号