首页> 外文学位 >A systems-level perspective of the flexion-relaxation phenomenon in the lumbar spine.
【24h】

A systems-level perspective of the flexion-relaxation phenomenon in the lumbar spine.

机译:腰椎屈曲松弛现象的系统级透视图。

获取原文
获取原文并翻译 | 示例

摘要

The current study presents a new musculoskeletal model of the active spinal stability system that includes the local system (e.g., multifidus muscles) and global system (e.g., lateral erector spinae, rectus abdominis muscles etc.) as proposed by Bergmark (1989), but then adds a super global system that considers the influence of the lower extremity tissues on the responses of the lumbar region. This innovative model was verified throughout in vivo experiments involving human subjects that included three different physical exertion tasks that stressed the low back and the lower extremities in different ways to explore these important interactions.;The empirical work in this dissertation focused on gathering data from the local, global and super global biomechanical systems before and after three 10 minute exercise protocols and then during a 40 minute recovery session. Twelve participants performed three separate experiments (three protocols) on different days: Protocol A- alternately perform 25 seconds of full trunk flexion and 5 seconds upright, relaxed posture; Protocol B- alternately perform 25 seconds of isometric exertion in a 45 degree trunk flexion posture and 5 seconds upright, relaxed posture; and Protocol C- consecutively perform 25 seconds of full trunk flexion followed by 5 seconds of upright, relaxed posture followed by 25 seconds of isometric exertion in a 45 degree trunk flexion posture and 5 seconds upright, relaxed posture. Kinematic and physiological measures were recorded before during after these protocols as well as during the recovery period.;The results of in vivo experiments, focused on the role of the pelvis/lower extremities in trunk flexion-extension, showed a 6.4% greater lumbar flexion angle (36° vs. 38.3°), a 10.2% greater (or later) EMG-off angle in multifidus (31.6° vs. 34.8°), and a 8% greater EMG-off angle in the iliocostalis (30.6° vs. 33°) in the restricted stooping posture than in the free stooping posture. Collectively, these results suggest that additional passive moments about the lumbar spine are generated in the restricted stooping posture because of the relative fixation of the pelvis that is seen during the restricted stooping condition. Consistent with these results, 22% greater lower extremity activation (10.5% MVC vs. 8.2% MVC) was observed in the free stooping posture, as compared to the restricted stooping posture. To summarize, these results indicate a significant role of the tissues of the larger super global system as a trunk stabilizer by immobilizing the pelvis during trunk flexion-extension motions and increasing the stiffness of the trunk systems by enhancing tension of the lumbodorsal fascia.;Regarding the effects of the 10 minute protocols on the biomechanical responses, results showed greater full lumbar flexion and deeper biomechanical equilibrium point between passive tissues and external moment (i.e., EMG-off angles) than the baseline (initial measure) after Protocol A: full lumbar flexion increased 7%; EMG-off angle increased 7.2% in multifidus and increased 7.8% in iliocostalis. In Protocol B the trends in the dependent variables were opposite to those seen in Protocols A: full lumbar flexion angle decreased by 4% and the EMG-off angles decreased by 4.9% in the multifidus and by 6.3% in iliocostalis. Protocol C (the mixed protocol) generated similar, but less pronounced results as compared to Protocol A: full lumbar flexion increased by 3.7%; EMG-off angles increased by 3.7% in multifidus and by 5.9% in iliocostalis.;In terms of the recovery process, the in vivo experiment, comparing characteristics of the recovery phase in three protocols, showed longer recovery time after the passive tissue elongation protocol (not fully recovered until 40 minutes of rest in all variables) than the muscle fatigue protocol (recovered after 5 minutes of resting in all variables) and the combined protocol (not fully recovered until 40 minutes of resting for the full lumbar flexion angle and the EMG-off angle; fully recovered in agonist muscle activation after 40 minutes of resting; and fully recovered in the synergist muscles after 5 minutes of resting).;The results of the theoretical modeling and experimental validation components of the current study indicate that a new musculoskeletal model with a more "systems-level" perspective is necessary to fully understand the biomechanical response of the lumbar spine during full flexion and near full flexion exertion. The results of this new systems-level biomechanical model can be used to develop a new EMG-assisted model of spinal loading and spinal stability as well as guidelines for designing safer working environments that can lower the risks of musculoskeletal injury to the low back. (Abstract shortened by UMI.)
机译:目前的研究提出了一种新的主​​动脊柱稳定系统的肌肉骨骼模型,该模型包括由Bergmark(1989)提出的局部系统(例如,多裂肌)和整体系统(例如,竖立脊柱,腹直肌等)。然后添加一个超级全局系统,该系统考虑下肢组织对腰椎区域反应的影响。在涉及人类受试者的整个体内实验中,都验证了这种创新模型,该实验包括三种不同的体力活动任务,这些任务以不同的方式强调下背部和下肢,以探索这些重要的相互作用。在三个10分钟的锻炼规程前后,然后在40分钟的恢复过程中,本地,全局和超级全局生物力学系统。 12名参与者在不同的日子进行了三个单独的实验(三个规程):规程A-交替进行25秒的完全躯干屈曲和5秒的直立放松姿势;方案B:以45度的躯干屈曲姿势和5秒直立放松姿势交替进行25秒的等距运动;和方案C-连续执行25秒的完全躯干屈曲,然后执行5秒的直立放松姿势,然后以45度的躯干屈曲姿势进行25秒的等距运动,并执行5秒的直立放松姿势。在这些方案之前,之后以及恢复期间记录了运动学和生理学指标;体内实验的结果侧重于骨盆/下肢在躯干屈伸中的作用,显示腰椎屈曲增加了6.4%角(36°vs.38.3°),多发性肌电图偏离角度大10.2%(或更高)(31.6°vs. 34.8°),i肋肌电图偏离角度大8%(30.6°vs. 34.8°)。受限弯腰姿势比自由弯腰姿势33°)总的来说,这些结果表明,由于在受限的屈曲状态下看到的骨盆相对固定,在受限的屈曲姿势下会产生关于腰椎的额外被动力矩。与这些结果一致,与受限的弯腰姿势相比,在自由弯腰姿势下观察到下肢的活动性增加了22%(MVC分别为10.5%和8.2%)。总而言之,这些结果表明较大的超级整体系统的组织通过在躯干屈伸运动中固定骨盆并通过增强腰椎筋膜的张力来增加躯干系统的刚度,从而起到了躯干稳定器的重要作用。 10分钟实验方案对生物力学反应的影响,结果显示,实验方案A:完全腰椎比常规基线(初始测量)更大的完全腰椎弯曲度和更深的生物力学平衡点在被动组织和外部力矩(即EMG偏离角)之间屈曲增加7%; EMG-off角多发增加7.2%,i突增加7.8%。在方案B中,因变量的趋势与方案A中的趋势相反:在多裂隙中,全腰屈曲角减小4%,EMG-off角减小4.9%,在cost肌中减小6.3%。方案C(混合方案)产生的结果与方案A相似,但效果较差:腰部完全屈曲增加了3.7%;在多发肌中,EMG-off角增加了3.7%,在i肌中,EMG-off角增加了5.9%。;就恢复过程而言,体内实验比较了三种方案中恢复阶段的特征,显示被动组织延长方案后恢复时间更长(在所有变量中都需要休息40分钟后才能完全恢复),而不是在肌肉疲劳协议中(在所有变量中都休息5分钟后可以恢复)和组合协议(在完全腰椎屈曲角度和腰椎间盘突出时要保持40分钟才能完全恢复)。 EMG-off角;静息40分钟后可在激动肌中完全恢复;静息5分钟后可在增效肌中完全恢复);;本研究的理论建模和实验验证结果表明,一种新的肌肉骨骼模型具有更“系统级”的观点,对于充分了解腰椎在完全屈曲和接近屈曲过程中的生物力学反应是必要的充分的屈曲运动。这种新的系统级生物力学模型的结果可用于开发新的EMG辅助的脊柱负荷和脊柱稳定性模型,以及用于设计更安全的工作环境的指南,以降低下背部肌肉骨骼损伤的风险。 (摘要由UMI缩短。)

著录项

  • 作者

    Jin, Sangeun.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Industrial.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 261 p.
  • 总页数 261
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号