首页> 外文学位 >Spinning Black Hole Pairs: Dynamics and Gravitational Waves.
【24h】

Spinning Black Hole Pairs: Dynamics and Gravitational Waves.

机译:旋转黑洞对:动力学和引力波。

获取原文
获取原文并翻译 | 示例

摘要

Black hole binaries will be an important source of gravitational radiation for both ground-based and future space-based gravitational wave detectors. The study of such systems will offer a unique opportunity to test the dynamical predictions of general relativity when gravity is very strong. To date, most investigations of black hole binary dynamics have focused attention on restricted scenarios in which the black holes do not spin (and thus are confined to move in a plane) and/or in which they stay on quasi-circular orbits.;However, spinning black hole pairs in eccentric orbits are now understood to be astrophysically equally important. These spinning binaries exhibit a range of complicated dynamical behaviors, even in the absence of radiation reaction. Their conservative dynamics is complicated by extreme perihelion precession compounded by spin-induced precession. Although the motion seems to defy simple decoding, we are able to quantitatively define and describe the fully three-dimensional motion of arbitrary mass-ratio binaries with at least one black hole spinning and expose an underlying simplicity. To do so, we untangle the dynamics by constructing an instantaneous orbital plane and showing that the motion captured in that plane obeys elegant topological rules.;In this thesis, we apply the above prescription to two formal systems used to model black hole binaries. The first is defined by the conservative 3PN Hamiltonian plus spin-orbit coupling and is particularly suitable to comparable-mass binaries. The second is defined by geodesics of the Kerr metric and is used exclusively for extreme mass-ratio binaries. In both systems, we define a complete taxonomy for fully three-dimensional orbits. More than just a naming system, the taxonomy provides unambiguous and quantitative descriptions of the orbits, including a determination of the zoom-whirliness of any given orbit. Through a correspondence with the rational numbers, we are able to show that all of the qualitative features of the well-studied equatorial geodesic motion around Schwarzschild and Kerr black holes are also present in more general black hole binary systems. This includes so-called zoom-whirl behavior, which turns out to be unexpectedly prevalent in comparable-mass binaries in the strong-field regime just as it is for extreme mass-ratio binaries.;In each case we begin by thoroughly cataloging the constant radius orbits which generally lie on the surface of a sphere and have acquired the name "spherical orbits". The spherical orbits are significant as they energetically frame the distribution of all orbits. In addition, each unstable spherical orbit is asymptotically approached by an orbit that whirls an infinite number of times, known as a homoclinic orbit. We further catalog the homoclinic trajectories, each of which is the infinite whirl limit of some part of the zoom-whirl spectrum and has a further significance as the separatrix between inspiral and plunge for eccentric orbits.;We then show that there exists a discrete set of orbits that are geometrically closed n-leaf clovers in a precessing orbital plane. When viewed in the full three dimensions, these orbits do not close, but they are nonetheless periodic when projected into the orbital plane. Each n-leaf clover is associated with a rational number, q, that measures the degree of perihelion precession in the precessing orbital plane. The rational number q varies monotonically with the orbital energy and with the orbital eccentricity. Since any bound orbit can be approximated as near one of these periodic n-leaf clovers, this special set offers a skeleton that illuminates the structure of all bound orbits in both systems, in or out of the equatorial plane. A first significant conclusion that can be drawn from this analysis is that all generic orbits in the final stages of inspiral under gravitational radiation losses are characterized by precessing clovers with few leaves, and that no orbit will behave like the tightly precessing ellipse of Mercury.;We close with a practical application of our taxonomy beyond the illumination of conservative dynamics. The numerical calculation of the first-order (adiabatic) approximation to radiatively evolving inspiral motion in extreme mass-ratio binaries is currently hindered by prohibitive computational cost. Motivated by this limitation, we explain how a judicious use of periodic orbits can dramatically expedite both that calculation and the generation of snapshot gravitational waves from geodesic sources.
机译:对于地面和未来的天基重力波探测器而言,黑洞双星将成为重力辐射的重要来源。对此类系统的研究将提供一个独特的机会,以在重力非常强的情况下测试广义相对论的动力学预测。迄今为止,大多数对黑洞二元动力学的研究都将注意力集中在黑洞不旋转(因此被限制在平面内移动)和/或它们停留在准圆形轨道上的有限情况下。现在,将偏心轨道上旋转的黑洞对理解为在天体上同等重要。即使没有辐射反应,这些纺丝二元也表现出一系列复杂的动力学行为。极端的近日点进动和自旋诱发的进动使它们的保守动力学变得复杂。尽管该运动似乎无视简单的解码,但我们能够定量地定义和描述任意质量比二进制文件的完整三维运动,其中至少有一个黑洞旋转,从而揭示了底层的简单性。为此,我们通过构造一个瞬时轨道平面并证明在该平面上捕获的运动遵循优雅的拓扑规则来解开动力学;在本文中,我们将上述规定应用于两个用于对黑洞双星进行建模的形式系统。第一个由保守的3PN哈密顿量加上自旋轨道耦合定义,特别适用于可比较质量的二进制。第二个是由Kerr度量的测地线定义的,仅用于极限质量比的二进制文件。在这两个系统中,我们为完整的三维轨道定义了完整的分类法。分类法不仅提供命名系统,还提供了对轨道的明确而定量的描述,包括确定任何给定轨道的缩放旋涡性。通过与有理数的对应关系,我们可以证明,在更普通的黑洞二元系统中,对Schwarzschild和Kerr黑洞周围进行深入研究的赤道大地测量运动的所有定性特征也都存在。这包括所谓的“缩放-旋转”行为,结果证明它在强场状态下的可比质量二进制文件中出乎意料地普遍存在,就像在极端质量比率二进制文件中一样。通常位于球面上的半径轨道,并已获得“球形轨道”的称呼。球形轨道很重要,因为它们大力构架了所有轨道的分布。此外,每个不稳定的球形轨道都会被无限次旋转的轨道渐近逼近,这被称为同斜轨道。我们进一步对同斜轨迹进行分类,每个同斜轨迹都是缩放旋涡谱的某些部分的无限旋涡极限,并且对于偏心轨道的吸气和突降之间的分离具有进一步的意义。然后,我们表明存在离散集在进动轨道平面中几何闭合的n叶三叶草的轨道。从完整的三个维度看,这些轨道不会闭合,但是当投影到轨道平面时它们仍然是周期性的。每个n片叶子的三叶草都与一个有理数q相关联,该q测量进动轨道平面中近日点进动的程度。有理数q随着轨道能量和轨道偏心率单调变化。由于任何束缚轨道都可以近似于这些周期性n叶三叶草之一,因此该特殊装置提供了一个骨架,可以阐明赤道面内或赤道面之外两个系统中所有束缚轨道的结构。可以从该分析得出的第一个重要结论是,在重力辐射损失下吸气的最后阶段,所有通用轨道的特征都在于旋进的三叶草很少,叶子很少,而且没有轨道会表现得像水星紧缩的椭圆。在保守性动力学的启发下,我们将分类学的实际应用作为结束。目前,在极高的质量比二进制文件中,对辐射演化的吸气运动的一阶(绝热)近似值的数值计算受制于过高的计算成本。受此限制的驱使,我们解释了如何明智地使用周期轨道可以极大地加快计算和从大地测量源生成快照引力波的速度。

著录项

  • 作者

    Grossman, Rebecca.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Physics Astronomy and Astrophysics.;Physics Astrophysics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 237 p.
  • 总页数 237
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号