首页> 外文学位 >Coherent states and geometric quantization.
【24h】

Coherent states and geometric quantization.

机译:相干态和几何量化。

获取原文
获取原文并翻译 | 示例

摘要

A system of coherent states associated to a symplectic manifold M is a map phi : M → H for some Hilbert space H. In this thesis, we define and study overcomplete systems of coherent states that arise from the program of geometric quantization, and their relations to the Fourier transform in quantum mechanics, the Bargmann transform, traditional, Perelomov-type and Rawnsley-type coherent states, and deformation quantization.; In quantum mechanics, the momentum space and position space wave functions are related by the Fourier transform. We investigate how the Fourier and Bargmann transforms arise in the context of geometric quantization. We consider a Hilbert space bundle H over the space J of all choices of complex structures on a symplectic vector space. This bundle is equipped with a projectively flat connection that was first described by Axelrod-Della Pietra-Witten. We construct the kernel for the integral parallel transport operator for this connection. The kernel is a Heisenberg-Weyl coherent state as well as the Bergman reproducing kernel. By extending geodesics to the boundary (for which the metaplectic correction is essential) we recover the Fourier transform rule from quantum mechanics, and also the Bargmann transform.; Next, we define coherent states associated to an arbitrary symplectic manifold using reproducing kernels introduced by Pasternak-Winiarski-Monastyrski-Wojcieszynski. These coherent states satisfy all of the traditional properties of coherent states, including overcompleteness. In the case that M is Kahler, they are related to heat kernels of Dirac operators. This relation gives a simple proof that the integral of the coherent density (relative to which the coherent states are overcomplete) is a topological invariant The coherent density is fundamental in the study of deformation quantization, and coincides with an object constructed by different means by Rawnsley, as does the coherent state 2-point function.; Finally, we explore the relation between coherent states and deformation quantization. By interpreting the limit h → 0 as the limit k → infinity for k-th tensor powers of a line bundle over M, coherent states provide an alternative quantization of M, which we show to be a pure state quantization.
机译:与辛流形M相关的相干态系统是映射phi:M→H对于某些希尔伯特空间H。在本文中,我们定义和研究了由几何量化程序及其相关关系产生的超完备相干系统量子力学中的傅立叶变换,Bargmann变换,传统,Perelomov型和Rawnsley型相干态以及变形量化。在量子力学中,动量空间和位置空间波函数通过傅立叶变换进行关联。我们研究了如何在几何量化的背景下产生傅立叶变换和巴格曼变换。我们考虑辛向量空间上所有复杂结构选择的空间J上的希尔伯特空间束H。此束配备了投影扁平连接,最初由Axelrod-Della Pietra-Witten描述。我们为此连接构造了用于并行并行传输运算符的内核。内核是一个海森堡-魏尔相干态,也是Bergman再现内核。通过将测地线扩展到边界(必须进行元偏微元校正),我们可以从量子力学以及Bargmann变换中恢复傅立叶变换规则。接下来,我们使用Pasternak-Winiarski-Monastyrski-Wojcieszynski引入的再现核定义与任意辛流形相关的相干状态。这些相干态满足相干态的所有传统特性,包括超完备性。在M为Kahler的情况下,它们与Dirac算子的热核有关。这种关系给出了一个简单的证明,即相干密度的积分(相对于相干状态是不完全的)是拓扑不变的。相干密度是变形量化研究的基础,并且与Rawnsley用不同方法构造的对象一致,相干状态2点函数也是如此。最后,我们探讨了相干态与变形量化之间的关系。通过将极限h→0解释为M上线束的第k个张量幂的极限k→无穷大,相干态提供了M的另一种量化,我们证明这是纯态量化。

著录项

  • 作者

    Kirwin, William D.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 111 p.
  • 总页数 111
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号