首页> 外文学位 >Cell Type Differences in Intrinsic Membrane Properties Regulate Responsiveness and Energy Consumption.
【24h】

Cell Type Differences in Intrinsic Membrane Properties Regulate Responsiveness and Energy Consumption.

机译:固有膜特性中的细胞类型差异调节反应性和能量消耗。

获取原文
获取原文并翻译 | 示例

摘要

Information processing in the brain depends upon the interactions of diverse signaling units, neurons, which vary in their circuit positions, biophysical and biochemical properties, and electrophysiological phenotypes. These distinguishing properties enable neurons to serve different computational and functional roles. For instance, the fast-spiking inhibitory subclasss, which synchronizes its firing at fast frequencies and makes divergent and convergent contacts onto the persimomatic compartments of its targets, is hypothesized to play an important role in regulating the timing and probability of spike output and thus the flow of information through the brain (reviewed in Chapter 1). However, the functional consequences of synchronized inhibition will depend on the integrative properties and circuit locations of the recipient neurons.;Using a combination of in-vitro whole cell electrophysiology, modeling, and model-neuron hybrids (dynamic clamp), we determined how fast synchronized inhibition interacts with integrative properties of a variety of neuronal types to regulate the rate (Chapter 2) and timing (Chapter 3) of spike generation. We find that a neuron's intrinsic physiology substantially affects the ability of fast synchronized inhibition to control neuronal responsiveness. In addition, we demonstrate how the relevant physiology can be flexibly altered by contextual and neuromodulatory factors. The results of these experiments suggest that synchronized fast-spiking activity can differentially affect various circuit elements and each element's responsiveness can be adjusted on a range of time scales to suit the cortex's changing computational requirements.;Because the brain is one of the most energetically expensive organs in the body with action potential generation accounting for significant portion of the energy usage, we hypothesized that differences in neuronal properties may also serve to minimize energy consumption subject to functional constraints. Again using electrophysiology, modeling, and dynamic clamp, we compared the energy needed to produce action potentials singly and in trains for a wide range of channel densities and kinetic parameters, and examined which combinations of parameters maximized spiking function while minimizing energetic cost (Chapter 4). We found evidence supporting our hypothesis in a wide range of neurons from several species. We conclude that neuronal biophysics are tuned to perform cost-effective functions.
机译:大脑中的信息处理取决于不同信号单元,神经元的相互作用,神经元的电路位置,生物物理和生化特性以及电生理表型各不相同。这些独特的特性使神经元能够发挥不同的计算和功能作用。例如,假设了快速加标抑制子类,该子类在快速频率上同步其发射,并在其目标的渗透隔室上形成发散和会聚的接触,它在调节加标输出的时间和可能性方面起着重要作用。信息通过大脑流动(在第1章中进行了概述)。然而,同步抑制的功能后果将取决于受体神经元的整合特性和电路位置。;结合体外全细胞电生理学,建模和模型神经元杂交(动态钳制)的组合,我们确定了多快同步抑制与多种神经元类型的整合特性相互作用,以调节尖峰生成的速率(第2章)和时序(第3章)。我们发现神经元的内在生理实质上影响了快速同步抑制以控制神经元反应能力的能力。此外,我们演示了如何通过上下文和神经调节因素灵活地改变相关生理。这些实验的结果表明,同步的快速触发活动可以差异地影响各种电路元件,并且可以在一定的时间范围内调整每个元件的响应能力,以适应皮质不断变化的计算需求。因为大脑是最耗能的大脑之一人体中具有动作电位生成的器官占能量使用的很大一部分,我们假设神经元特性的差异也可能在功能限制的情况下最大程度地减少能量消耗。再次使用电生理学,建模和动态钳制,我们比较了在宽范围的通道密度和动力学参数下单次产生和在列车中产生动作电位所需的能量,并研究了哪些参数组合最大程度地增强了尖峰功能,同时使能量成本最小化(第4章) )。我们找到了支持来自多种物种的广泛神经元假说的证据。我们得出结论,神经元生物物理学已调整为执行具有成本效益的功能。

著录项

  • 作者

    Otte, Stephani L.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号