首页> 外文学位 >Numerical inversion of Laplace transforms by the trapezoidal-type methods.
【24h】

Numerical inversion of Laplace transforms by the trapezoidal-type methods.

机译:梯形法对Laplace变换进行数值反演。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, we investigate three numerical methods for inverting the Laplace transform. These methods are all based on the trapezoidal-type approximations to the Bromwich integral. The first method is the direct integration method: It is a straightforward application of the trapezoidal rule to the Bromwich integral, followed by convergence acceleration techniques to sum efficiently the infinite series that arises. We identify and analyze three sources of error associated with this method, namely the discretization, truncation, and conditioning error. An integral representation of the discretization error is derived and the truncation and conditioning error are also estimated. The method contains a free parameter a (in fact, the position of Bromwich line) that can be adjusted to maximize the accuracy. We present both theoretical formulas and algorithmic techniques for selecting the optimal value of a. The second method we investigate owes to Talbot. It is likewise based on the trapezoidal-type approximation of the Bromwich integral, but uses a deformed contour. We derive a formula for the discretization error associated with this method. Based on this, we propose an algorithm for the optimal selection of the free parameters contained in Talbot's method. The third method we believe to be new. It is based on Ooura and Mori's so-called double exponential formulas for integrals of Fourier-type that we have adapted to the Laplace inversion problem. Throughout the thesis, we test our theoretical formulas and practical algorithms on a wide range of transforms, many of which are taken from the engineering literature.
机译:本文研究了三种用于拉普拉斯变换的数值方法。这些方法都是基于Bromwich积分的梯形近似。第一种方法是直接积分法:将梯形法则直接应用于Bromwich积分,然后采用收敛加速技术有效地对出现的无穷级数求和。我们确定并分析了与该方法相关的三种误差源,即离散化,截断和条件误差。得出离散化误差的积分表示,并且还估计了截断和条件误差。该方法包含一个自由参数a(实际上是Bromwich线的位置),可以对其进行调整以最大程度地提高准确性。我们提供了用于选择 a 最佳值的理论公式和算法技术。我们研究的第二种方法归功于Talbot。它同样基于Bromwich积分的梯形近似,但使用了变形的轮廓。我们推导了与此方法相关的离散化误差的公式。基于此,我们提出了一种用于Talbot方法中包含的自由参数的最佳选择的算法。我们认为是第三种新方法。它基于Ooura和Mori所谓的傅里叶型积分的双指数公式,我们已经适应了Laplace反演问题。在整个论文中,我们对各种变换进行了理论公式和实用算法的测试,其中许多是从工程文献中选取的。

著录项

  • 作者

    Lin, FuSen Frank.;

  • 作者单位

    Oregon State University.;

  • 授予单位 Oregon State University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号