首页> 外文学位 >Increasing the carbon flow into the aromatic common pathway: Biosynthesis of 3-dehydroshikimic acid from D-glucose.
【24h】

Increasing the carbon flow into the aromatic common pathway: Biosynthesis of 3-dehydroshikimic acid from D-glucose.

机译:增加碳流入芳香族共同途径的途径:由D-葡萄糖生物合成3-脱氢shi草酸。

获取原文
获取原文并翻译 | 示例

摘要

Metabolic engineering, DNA microarray and recombinant DNA technology were used to develop strategies to increase the carbon flow directed into the shikimate pathway. 3-Dehydroshikimic acid (DHS) is the most advanced intermediate shared by both biosynthesis of aromatic amino acids and biocatalytic syntheses of a variety of value-added chemicals. Strategies elaborated to increase the yield and concentration of DHS synthesized from glucose are thus applicable to the microbial synthesis of a wide range of chemicals.; Shikimate pathway product yields in microbial synthesis are ultimately limited by the glucose transport mechanism. To increase the availability of phosphoenolpyruvate (PEP), overexpression of PEP synthase or alteration of glucose transport by Glf-mediated facilitated diffusion or the Ga1P galactose permease in E. coli constructs led to increased yields of DHS and shikimate pathway byproducts. Overexpression of PEP synthase was currently leading to the synthesis of higher yields of DHS and shikimate pathway byproducts relative to alteration of glucose transport. In addition, the production of DHS can be enhanced by changing fermentor-controlled pH from 7 to 6.; DNA microarray technology was used to study gene expression profiles under fed-batch fermentor conditions. The results showed that a simple overexpression of PEP synthase led to dramatic expression changes of many genes. Based on the microarray study, a more stable DAHP synthase (AroGFBR) was isolated by PCR mutagenesis and has its advantage over previously used DAHP synthase (AroFFBR) because of its stability over the course of a fermentation run.; The export of shikimic acid or DHS was also studied. Two approaches to identify the shikimate export protein were attempted without success. The first approach attempted to identify a mutant deficient in shikimate export while the second approach was based on the overexpression of a shikimate export protein. The failure of both approaches is consistent with the possibility that multiple proteins exist for the export of shikimic acid. Furthermore, the determination that intracellular shikimic acid concentrations are much lower than extracellular concentrations suggests that export of this hydroaromatic is not a limiting factor during microbial synthesis.
机译:代谢工程,DNA芯片和重组DNA技术用于开发策略,以增加直接进入the草酸酯途径的碳流量。 3-脱氢植酸(DHS)是芳香族氨基酸的生物合成和多种增值化学品的生物催化合成所共有的最先进的中间体。因此,为提高由葡萄糖合成的DHS的收率和浓度而精心设计的策略适用于多种化学品的微生物合成。微生物合成中草酸酯途径产物的产量最终受到葡萄糖转运机制的限制。为了增加磷酸烯醇丙酮酸(PEP)的可用性,PEF合酶的过表达或Glf介导的促进扩散或Ga1P半乳糖通透酶在大肠杆菌构建物中的葡萄糖转运改变导致DHS和sh草酸酯途径副产物的产量增加。 PEP合酶的过表达目前导致相对于葡萄糖转运改变,合成更高产量的DHS和sh草酸酯途径副产物。此外,通过将发酵罐控制的pH从7更改为6,可以提高DHS的产量。 DNA微阵列技术用于研究分批补料发酵罐条件下的基因表达谱。结果表明,PEP合酶的简单过表达导致许多基因的显着表达变化。基于微阵列研究,通过PCR诱变分离了更稳定的DAHP合酶(AroGFBR),并且由于其在发酵过程中的稳定性而具有优于先前使用的DAHP合酶(AroFFBR)的优势。还研究了sh草酸或DHS的出口。尝试了两种鉴定the草酸酯输出蛋白的方法,但均未成功。第一种方法试图鉴定缺乏sh草酸酯出口的突变体,而第二种方法则基于a草酸酯出口蛋白的过表达。两种方法的失败都与存在多种蛋白质用于出口iki草酸的可能性一致。此外,细胞内sh草酸浓度远低于细胞外浓度的确定表明,这种氢芳烃的输出不是微生物合成过程中的限制因素。

著录项

  • 作者

    Yi, Jian.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 有机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号