首页> 外文学位 >Label-free flow cytometry using multiplex coherent anti-Stokes Raman scattering (MCARS) spectroscopy.
【24h】

Label-free flow cytometry using multiplex coherent anti-Stokes Raman scattering (MCARS) spectroscopy.

机译:使用多重相干反斯托克斯拉曼散射(MCARS)光谱的无标记流式细胞仪。

获取原文
获取原文并翻译 | 示例

摘要

Over the last 50 years, flow cytometry has evolved from a modest cell counter into an invaluable analytical tool that measures an ever-expanding variety of phenotypes. Flow cytometers interrogate passing samples with laser light and measure the elastically scattered photons to ascertain information about sample size, granularity, and basic morphology. Obtaining molecular information, however, requires the addition of exogenous fluorescent labels. These labels, although a power tool, have numerous challenges and limitations such as large emission spectra, non-specific binding, available conjugation chemistries, and cellular toxicity, which can alter cellular chemistries. Additionally, these labels may affect the dynamics and thermodynamics of samples such as the lipid bilayer in cell membranes, and the process of conjugating fluorophores and labeling cells can be time consuming; thus, reducing clinical turn-around times and affecting time-sensitive samples. To move beyond fluorescent labels in microscopy, a variety of techniques that probe the intrinsic Raman vibrations within a sample have been developed, such as coherent anti-Stokes Raman scattering (CARS) and Raman microspectroscopy.;In this dissertation, I present the first development of a label-free flow cytometer that measures the elastically scattered photons and probes the intrinsic Raman vibrations of passing samples using multiplex coherent anti-Stokes Raman scattering (MCARS). MCARS, a CARS technique that probes a large region of the Raman spectrum simultaneously, provides rich molecularly-sensitive information. Furthermore, I present its application to sorting polymer microparticles and its use in two example biological applications: monitoring lipid bodies within cultures of Saccharomyces cerevisiae, a model yeast with numerous human homologs, and monitoring the affect of nitrogen starvation on Phaeodactylum tricornutum, a diatom, which is being genetically engineered to efficiently produce biofuels.
机译:在过去的50年中,流式细胞术已经从一种适度的细胞计数器发展成为一种无价的分析工具,可以测量不断扩展的各种表型。流式细胞仪用激光询问通过的样品,并测量弹性散射的光子,以确定有关样品大小,粒度和基本形态的信息。但是,获取分子信息需要添加外源荧光标记。这些标记物虽然是一种电动工具,但仍具有许多挑战和局限性,例如发射光谱大,非特异性结合,可用的缀合化学和细胞毒性,这些都会改变细胞的化学性质。此外,这些标记可能会影响样品的动力学和热力学,例如细胞膜中的脂质双层,而荧光团和标记细胞的缀合过程可能会很耗时。因此,减少了临床周转时间并影响了对时间敏感的样品。为了超越显微镜中的荧光标记,已经开发了多种探测样品内在固有拉曼振动的技术,例如相干抗斯托克斯拉曼散射(CARS)和拉曼显微技术。一种无标记的流式细胞仪的原理,它使用多重相干反斯托克斯拉曼散射(MCARS)测量弹性散射的光子并探测通过样品的固有拉曼振动。 MCARS是一种可同时探测拉曼光谱大范围区域的CARS技术,可提供丰富的分子敏感信息。此外,我将介绍其在聚合物微粒分类中的应用及其在两个示例生物学应用中的应用:监测酿酒酵母(具有多种人类同源物的模型酵母)培养物中的脂质体,以及监测氮饥饿对三角藻(Phaeodyylum tricornutum),硅藻的影响,经过基因工程改造以有效生产生物燃料。

著录项

  • 作者

    Camp, Charles H., Jr.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号