首页> 外文学位 >Nanoscalar modifications to polymeric tissue engineering scaffolds: Effect on cellular behavior.
【24h】

Nanoscalar modifications to polymeric tissue engineering scaffolds: Effect on cellular behavior.

机译:纳米标量修饰聚合物组织工程支架:对细胞行为的影响。

获取原文
获取原文并翻译 | 示例

摘要

Polymeric scaffolds provide a surface that can facilitate cell growth and tissue morphogenesis. Of particular interest is the role of nanoscalar features on cell behavior. Nanoscale topographies can be generated on two-dimensional polymeric substrates via reactive ion etching. The magnitude and morphology of the resultant surfaces can be tailored by varying the gas media, etching time and power used. Nanofibrillar surfaces were produced on polyethylene terephthalate films via oxygen-plasma etching. These nanofibrils were dimensionally similar to collagen fibers. Cells cultured on nanofibrillar surfaces were shown to have a disrupted cytoskeleton, lower levels of cell-substrate signaling, reduced strength of adhesion and an inhibition of lipid droplet coalescence. The results suggest that cells can detect nanoscalar surface topographies and alter their function in response to these environmental stimuli.;While nanofibrillar surfaces can be considered pseudo-three dimensional, they cannot produce 3-D cell structures. Thus truly three dimensional scaffolds must be fabricated to determine the role of nanoscalar fibers on cell organization and function. Electrospinning was employed to generate 3-D meshes of polycaprolactone, a common biodegradable polymer. These nonwoven meshes were comprised of 500 nm fibers with an average pore size of 5 mum. In addition to forming mats of nonwoven fibers, electrospinning technology can also produce tubular scaffolds. These tubular scaffolds were seeded with human vascular smooth muscle cells and cultured for two days. After 2 days in culture, cells assumed a helical orientation around the lumen of the tube, an architecture which closely mimics natural blood vessels. Thus electrospun scaffolds facilitate the growth and organization of cell populations in a manner which imitates the natural tissue.
机译:聚合物支架提供了可以促进细胞生长和组织形态发生的表面。特别令人关注的是纳米标量特征对细胞行为的作用。可以通过反应性离子蚀刻在二维聚合物基板上生成纳米级形貌。可以通过改变气体介质,蚀刻时间和所使用的功率来调整所得表面的大小和形态。通过氧等离子体蚀刻在聚对苯二甲酸乙二醇酯膜上产生纳米原纤维表面。这些纳米原纤维在尺寸上类似于胶原纤维。显示在纳米原纤维表面上培养的细胞具有破坏的细胞骨架,较低水平的细胞底物信号传导,降低的粘附强度和抑制脂质滴聚结。结果表明细胞可以检测纳米标量表面形貌并响应这些环境刺激而改变其功能。虽然纳米原纤维表面可以被认为是伪三维,但它们不能产生3D细胞结构。因此,必须制造真正的三维支架来确定纳米标量纤维对细胞组织和功能的作用。使用静电纺丝来生成聚己内酯(一种常见的可生物降解的聚合物)的3-D网格。这些非织造网由500nm的平均孔径为5μm的纤维组成。除了形成非织造纤维垫之外,静电纺丝技术还可以生产管状支架。将这些管状支架植入人血管平滑肌细胞并培养两天。培养2天后,细胞在管腔周围呈螺旋状取向,该结构紧密模拟天然血管。因此,电纺支架以模仿天然组织的方式促进细胞群体的生长和组织。

著录项

  • 作者

    Powell, Heather M.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Biology Molecular.;Engineering Materials Science.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 268 p.
  • 总页数 268
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号