首页> 外文学位 >Computational fluid dynamic solutions of optimized heat shields designed for earth entry.
【24h】

Computational fluid dynamic solutions of optimized heat shields designed for earth entry.

机译:为进入地面而设计的优化隔热板的计算流体动力学解决方案。

获取原文
获取原文并翻译 | 示例

摘要

Computational fluid dynamic solutions are obtained for heat shields optimized for aerothermodynamic performance using modified Newtonian impact theory. Aerodynamically, the low-order approach matches all computational simulations within 10%. Benchmark Apollo 4 solutions, at the moment of maximum heating, show that predicted heat fluxes using this approach under-predict convective heat flux by approximately 30% and over-predict radiative heat flux by approximately 16% when compared to computational results. Parametric edge radius studies display a power law reliance of convective heat flux on local edge radius of curvature. A slender, oblate heat shield optimized for a single design point is shown to produce heat fluxes that are 1.8 times what was predicted using the Newtonian approach. For this design, maximum heat flux decreases with the inverse cube of the base cross section sharpness. Uncoupled radiative heat flux results based on CFD solutions for a slender heat shield show that the lower-order approach under-predicts the heating from the radiating shock layer by 70%, suggesting the infeasibility of empirical relations used to predict radiative heat flux for eccentric blunt-body heat shields. Coupled vehicle/trajectory optimized designs are examined for both lunar return (11 km/s) and Mars return (12.5 km/s) and show possible discrepancies for eccentric cross sections using low-order semi-empirical correlations. Ultimately, gains suggested by the lower order approach using more complex geometries are not reflected in these high-fidelity simulations. In some respects (especially with regards to the heating environment), the simpler shape (i.e. a 25° spherical segment) is the ideal one.
机译:使用改进的牛顿冲击理论,获得了针对空气动力学性能进行了优化的隔热板的计算流体动力学解决方案。在空气动力学方面,低阶方法可在10%的范围内匹配所有计算模拟。基准Apollo 4解决方案在最大加热时显示,与计算结果相比,使用这种方法预测的热通量低估了对流热通量约30%,过度预测了辐射热通量约16%。参数化边缘半径研究显示出对流热通量对局部边缘曲率半径的幂律依赖。针对单个设计点进行了优化的细长扁形隔热板显示出的热通量是使用牛顿方法预测的1.8倍。对于此设计,最大热通量随基础横截面清晰度的倒数立方而减小。基于CFD解决方案的细长挡热板的非耦合辐射热通量结果表明,低阶方法将辐射激波层的热量预测不足了70%,这表明经验关系用于预测偏心钝器的辐射热通量是不可行的体隔热罩。针对月球返回(11 km / s)和火星返回(12.5 km / s)检查了车辆/轨迹的优化设计,并使用低阶半经验相关性显示了偏心截面的可能差异。最终,使用更复杂的几何形状的低阶方法建议的增益不会反映在这些高保真度仿真中。在某些方面(特别是在加热环境方面),较简单的形状(即25°球形段)是理想的形状。

著录项

  • 作者

    Meeroff, Jamie G.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Aerospace.;Atmospheric Sciences.;Physics High Temperature.
  • 学位 M.S.
  • 年度 2010
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号