首页> 外文期刊>Nuclear science and engineering >A Heat Conduction and Convection Analytical Benchmark for Adjoint Solution Verification of Computational Fluid Dynamics Codes Used in Reactor Design
【24h】

A Heat Conduction and Convection Analytical Benchmark for Adjoint Solution Verification of Computational Fluid Dynamics Codes Used in Reactor Design

机译:用于反应堆设计中计算流体动力学代码的伴随溶液验证的导热和对流分析基准

获取原文
获取原文并翻译 | 示例
       

摘要

This work presents a heat transport benchmark problem when modeling the steady-state radial conduction in a fuel rod coupled to the axial heat convection in a coolant surrounding the rod and flowing along it. This benchmark problem admits exact analytical solutions for the spatially dependent temperature distributions within the rod and the surrounding coolant. The adjoint sensitivity analysis methodology (ASAM) is applied to compute the analytical expressions of the adjoint state functions for this benchmark problem. In turn, these adjoint state functions are used to compute exactly the first-order sensitivities of the various temperature distributions to the benchmark's thermal-hydraulics parameters. Locations of particular importance are those where the rod, the rod surface, and the coolant temperatures attain their maxima. The analytical expressions of the benchmark sensitivities thus obtained are subsequently used to compute numerical values of the sensitivities of the various temperature distributions that would arise in the preliminary design of the G4M Reactor to thermal-hydraulics parameters characteristic of this reactor. The exact benchmark sensitivities are used for verifying the numerical results produced by the FLUENT Adjoint Solver, a code that has been used for computing thermal-hydraulics processes within the G4M Reactor. This solution verification process indicates that the current FLUENT Adjoint Solver cannot compute any sensitivities for the temperature distribution within the solid rod. However, the FLUENT Adjoint Solver is capable of computing the sensitivities of fluid temperatures to boundary parameters (e.g., boundary temperature, boundary velocity, and boundary pressure), but yields accurate results only for the sensitivities of the fluid outlet temperature and the maximum rod surface temperature to the inlet temperature and inlet velocity, respectively. Even for these sensitivities, the FLUENT Adjoint Solver typically needed over 20 000 iterations to converge to the correct solution. In fact, if the exact sensitivity results had not been known a priori, employment of a user-defined iteration-stopping criterion would have likely produced an erroneous result, which would have been noticed by the user only if the user had had the foresight of computing the respective sensitivities independently, via finite-differences using FLUENT recomputations. Several other important sensitivities, including sensitivities to the boundary heat transfer coefficient and sensitivities to material properties (thermal conductivity and specific heat), cannot be obtained from the current FLUENT postprocessing output. Ideally, the solution verification of the adjoint functions produced by the FLUENT Adjoint Solver would be performed by directly comparing these to the exact expressions of the adjoint functions for the benchmark problem. Such a direct comparison and, hence, a direct solution verification of the FLUENT Adjoint Solver, is currently not possible, because the current FLUENT Adjoint Solver does not provide access to the adjoint functions it computes. Therefore, the results produced by the FLUENT Adjoint Solver can only be verified indirectly, by comparing temperature sensitivities computed using the FLUENT Adjoint Solver to the exact results obtained from the analytical expression of the corresponding benchmark sensitivities. This situation further underscores the need for developing additional thermal-hydraulics benchmark problems that admit exact solutions.
机译:当对燃料棒中的稳态径向传导进行建模时,这项工作提出了传热基准问题,燃料棒中的稳态径向传导与围绕棒并沿棒流动的冷却剂中的轴向热对流耦合。这个基准问题允许对杆和周围冷却液中与空间相关的温度分布进行精确的解析解。伴随灵敏度分析方法(ASAM)用于计算此基准问题的伴随状态函数的解析表达式。反过来,这些伴随状态函数用于精确计算各种温度分布对基准热工液压参数的一阶灵敏度。特别重要的位置是杆,杆表面和冷却液温度达到最大值的位置。如此获得的基准灵敏度的解析表达式随后用于计算各种温度分布的灵敏度的数值,该数值将在G4M反应堆的初步设计中对该反应堆的热工水力参数特征产生。精确的基准灵敏度用于验证FLUENT伴随求解器产生的数值结果,该代码已被用于计算G4M反应堆中的热工液压过程。该解决方案验证过程表明,当前的FLUENT伴随求解器无法计算出实心棒内温度分布的任何灵敏度。但是,FLUENT伴随求解器能够计算流体温度对边界参数(例如,边界温度,边界速度和边界压力)的敏感度,但是仅对流体出口温度和最大杆表面的敏感度产生准确的结果温度分别对应于入口温度和入口速度。即使对于这些灵敏度,FLUENT伴随求解器通常也需要进行20000次迭代才能收敛到正确的解。实际上,如果事先不知道确切的灵敏度结果,则使用用户定义的迭代停止标准可能会产生错误的结果,只有在用户具有预见性的情况下,用户才会注意到该结果。使用FLUENT算术通过有限差分独立地计算各自的灵敏度。无法从当前的FLUENT后处理输出中获得其他几个重要的敏感度,包括对边界传热系数的敏感度和对材料特性(导热率和比热)的敏感度。理想情况下,可以通过将FLUENT伴随求解器产生的伴随函数直接与基准问题的伴随函数的精确表达式进行比较来执行对解决方案的验证。当前无法对FLUENT伴随求解器进行这种直接比较,因此无法进行直接的解决方案验证,因为当前的FLUENT伴随求解器无法提供对其计算的伴随函数的访问。因此,通过将使用FLUENT伴随求解器计算出的温度灵敏度与从相应基准灵敏度的解析表达式获得的精确结果进行比较,只能间接验证FLUENT伴随求解器产生的结果。这种情况进一​​步强调了需要开发其他的热液压基准问题,以便采用精确的解决方案。

著录项

  • 来源
    《Nuclear science and engineering》 |2016年第4期|452-480|共29页
  • 作者单位

    University of South Carolina, Department of Mechanical Engineering, 300 Main Street, Columbia, South Carolina 29208;

    University of South Carolina, Department of Mechanical Engineering, 300 Main Street, Columbia, South Carolina 29208;

    University of South Carolina, Department of Mechanical Engineering, 300 Main Street, Columbia, South Carolina 29208;

    University of South Carolina, Department of Mechanical Engineering, 300 Main Street, Columbia, South Carolina 29208;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CFD codes; ASAM; transport benchmark problem;

    机译:CFD代码;ASAM;运输基准问题;
  • 入库时间 2022-08-18 00:42:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号