首页> 外文学位 >Multi-objective optimization based engineering decision tool.
【24h】

Multi-objective optimization based engineering decision tool.

机译:基于多目标优化的工程决策工具。

获取原文
获取原文并翻译 | 示例

摘要

Prior to the acceptance of computer aided engineering (CAE) software in the product development process (PDP), product development was characterized by a design-test-redesign-test cycle. This activity was time consuming and resource intensive. As CAE software tools have been integrated into the PDP, the PDP can be characterized by a design-simulate-redesign-test cycle. The addition of CAE tools to the PDP has reduced the time to market and resource consumption.;In the last decade, CAE software has become easier to use and computer power has increased such that CAE software is more widely used in the PDP. In parallel, there has been a desire, in the last decade, to further reduce product development times and resource consumption. To achieve this next step in reduction of PDP time and resource consumption, the need for increased integration of CAE software earlier in the PDP is needed. This will provide the design engineer with increased design problem knowledge earlier in the PDP, which is when increased knowledge about the design problem is most valuable in the PDP timeline and can impact the product design the most. Design problems are characterized by having multiple solutions. The implication of this is that there are multiple acceptable solutions but there are few global optimum solutions. It is the design engineer's chief aim to find the most optimum solution to the design problem at hand.;Simply put, the aim of the method presented in this thesis is to integrate computational fluid dynamics (CFD) models earlier in the PDP to facilitate engineering decision making early in the PDP.;In this thesis, a simulation workflow is demonstrated that connects computer aided design (CAD) software with CFD software, which is a CAE software, with both connected to a multi-objective optimization algorithm. This simulation workflow is used to generate a Pareto-optimal set of designs, sometimes called non-dominant, set of designs. The design problem is represented in the CAD software with the geometric design variables explicitly defined in the CAD representation of the design problem. The CFD software is used to calculate the performance objectives of the design solution. The multi-objective optimization algorithm evaluates the performance of the design solution and chooses new design variable values for use in the CAD representation. This process continues until the Pareto-optimal set of designs is identified. This is the Level-1 optimization of the overall framework presented in this thesis. The Level-2 optimization consists of an algorithm that operates on the Pareto-optimal set of designs identified in the Level-1 optimization. The algorithm presents the user with a number of designs from the Pareto-optimal set. The user chooses the best design solution from the design solutions shown based on higher-level, qualitative information. This continues until all of the Pareto-optimal designs have been evaluated or the user terminates the process.;This simulation flow facilitates using CAE software, specifically CFD, earlier in the PDP which leads to simulation based design. This maximizes design problem knowledge earlier in the PDP, reduces the PDP time, and reduces the resources required to develop a new product.
机译:在产品开发过程(PDP)中接受计算机辅助工程(CAE)软件之前,产品开发的特点是设计-测试-重新设计-测试周期。此活动既耗时又占用资源。由于CAE软件工具已集成到PDP中,因此PDP可以通过设计-仿真-重新设计-测试周期来表征。在PDP中增加了CAE工具,从而缩短了上市时间和资源消耗。在过去的十年中,CAE软件变得更加易于使用,并且计算机性能得到了提高,因此CAE软件在PDP中得到了更广泛的使用。同时,在过去的十年中,人们希望进一步减少产品开发时间和资源消耗。为了实现减少PDP时间和资源消耗的下一步,需要在PDP中更早地增加CAE软件的集成。这将为设计工程师在PDP中更早地提供更多的设计问题知识,那时,有关设计问题的更多知识在PDP时间轴中最有价值,并且对产品设计的影响最大。设计问题的特征在于具有多种解决方案。这意味着存在多个可接受的解决方案,但几乎没有全局最佳解决方案。找到当前设计问题的最佳解决方案是设计工程师的主要目标。简单地说,本文提出的方法的目的是在PDP的早期集成计算流体动力学(CFD)模型,以方便工程设计。在本论文中,我们演示了一种仿真工作流程,该工作流程将计算机辅助设计(CAD)软件与CFD软件(一种CAE软件)相连接,两者均连接到多目标优化算法。该仿真工作流程用于生成帕累托最优设计集,有时称为非主要设计集。在CAD软件中使用在设计问题的CAD表示中明确定义的几何设计变量来表示设计问题。 CFD软件用于计算设计解决方案的性能目标。多目标优化算法评估设计解决方案的性能,并选择新的设计变量值以用于CAD表示。该过程一直持续到确定了帕累托最优设计集为止。这是本文提出的总体框架的一级优化。级别2优化包括一种算法,该算法对级别1优化中确定的帕累托最优设计集起作用。该算法为用户提供了帕累托最优集合中的许多设计。用户根据更高级别的定性信息从所示的设计方案中选择最佳的设计方案。这一直持续到所有帕累托最优设计都经过评估或用户终止过程为止。该仿真流程有助于在PDP的早期使用CAE软件(特别是CFD),从而实现基于仿真的设计。这样可以使PDP早期的设计问题知识最大化,减少PDP时间,并减少开发新产品所需的资源。

著录项

  • 作者

    Shuttleworth, Adam Joe.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Mechanical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号