首页> 外文学位 >Production of secondary metabolites from acetyl Co-A precursors in bacterial and fungal hosts.
【24h】

Production of secondary metabolites from acetyl Co-A precursors in bacterial and fungal hosts.

机译:在细菌和真菌宿主中由乙酰基Co-A前体产生次级代谢产物。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation investigates two classes of secondary metabolites: isoprenoids and polyketides.;In Part 1, we consider the heterologous production of a plant isoprenoid---the malarial drug precursor amorphadiene---in the bacterium Escherichia coli. Metabolic flux analysis is used to investigate the changes to E. coli's metabolism resulting from the incorporation of a non-native pathway that draws on E. coli's supply of acetyl-CoA to produce amorphadiene. We have built a system for flux analysis that involves (1) compilation of a biochemical network representing the central metabolism and heterologous pathways in E. coli; (2) chemostat cultivation of the strains; (3) measurements of biomass components and secreted metabolites; (4) isotopomer measurements using 13C-labeled glucose as a carbon source; and (5) a solving program to calculate intracellular metabolic fluxes.;In general, the strain engineered to produce amorphadiene demonstrates decreased fluxes to protein, lipids, acetate, and carbohydrate relative to the control strain carrying only empty vectors. This may mean that acetyl-CoA is being redirected from lipid biosynthesis and acetate secretion to amorphadiene production in the amorphadiene producing strain, or it may be that the amorphadiene producer is growing at a slower rate than the control strain because of the burden of heterologous protein production or the toxicity of prenylphosphate intermediates. The observed differences may simply be the expected growth-rate-dependent differences.;The fatty acid distribution is different between the amorphadiene producer and the control strain. Cyclopropane fatty acids are produced at very low levels in the amorphadiene producer relative to the control strain. The reason for this difference is unknown. It may be that S-adenosyl-L-methionine becomes limiting in the amorphadiene producing strain as a result of increased demand for tRNA methylation. Alternatively, it may be that amorphadiene, a hydrocarbon, affects the fluidity of the cell membrane, and the cell changes its fatty acid profile to compensate. It may also be a growth-rate-dependent observation. Preliminary microarray studies supporting these observations are discussed.;In Part 2, we consider the production of norsolorinic acid (NOR), a precursor to the toxic, carcinogenic polyketide, sterigmatocystin (ST), in the filamentous fungus Aspergillus nidulans. (Abstract shortened by UMI.)
机译:本文研究了两类次生代谢产物:类异戊二烯和聚酮化合物。在第1部分中,我们考虑了在大肠杆菌中异源生产植物类异戊二烯-疟疾药物前体amorphadiene-的方法。代谢通量分析用于调查由于引入大肠杆菌的乙酰辅酶A产生的非天然途径而引入的非天然途径导致的大肠杆菌代谢变化。我们已经建立了一个用于流量分析的系统,该系统涉及(1)汇编一个代表大肠杆菌的中心代谢和异源途径的生化网络; (2)菌株的化学恒温培养; (3)测量生物量成分和分泌的代谢产物; (4)使用13C标记的葡萄糖作为碳源的同位素测量; (5)计算细胞内代谢通量的求解程序。通常,经工程改造以生产吗啡二烯的菌株证明相对于仅携带空载体的对照菌株,蛋白质,脂质,乙酸盐和碳水化合物的通量降低。这可能意味着乙酰辅酶A从脂质的生物合成和乙酸盐分泌转移到了生产吗啡二烯的菌株中的吗啡二烯生产,或者可能是由于异源蛋白的负担,吗啡二烯的生产者以比对照菌株慢的速度生长。异戊烯基磷酸酯中间体的生产或毒性。观察到的差异可能仅仅是预期的生长速率依赖性差异。紫穗槐二烯生产者和对照菌株之间的脂肪酸分布不同。相对于对照菌株,在吗啡二烯生产者中环丙烷脂肪酸的产生量非常低。这种差异的原因尚不清楚。由于对tRNA甲基化的需求增加,S-腺苷-L-甲硫氨酸可能会限制在生产吗啡二烯的菌株中。或者,可能是碳氢化合物吗啡二烯会影响细胞膜的流动性,并且细胞会改变其脂肪酸谱以进行补偿。这也可能是依赖增长率的观察。讨论了支持这些观察的初步微阵列研究。在第2部分中,我们考虑了在丝状真菌构巢曲霉中产生有毒致癌性聚酮化合物stercysttocystin(ST)的去甲鸟尿酸(NOR)。 (摘要由UMI缩短。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号