首页> 外文学位 >Artificial Cellulosomes and Arsenic Cleanup: From Single Cell Programming to Synthetic Yeast Consortium.
【24h】

Artificial Cellulosomes and Arsenic Cleanup: From Single Cell Programming to Synthetic Yeast Consortium.

机译:人工纤维素体和砷净化:从单细胞程序设计到​​合成酵母联盟。

获取原文
获取原文并翻译 | 示例

摘要

As our society marches toward a more technologically-inclined and industrialized future, energy and environmental sustainability are two of the most challenging problems we face today. With the aid of recent advances in recombinant molecular technology, metabolic engineering has been employed on a variety of host organisms to improve biosorption and biocatalytic capabilities. This has shown immense promise and has become an attractive tool for bioremediation and biofuel production. In regards to these challenges, this dissertation focuses on the use of metabolic engineering for biofuel production and arsenic remediation.;The first objective of this dissertation was to create an efficient and inexpensive whole-cell biocatalyst in an effort to produce economically compatible and sustainable biofuels, such as cellulosic ethanol. The approach used was via surface display of versatile cellulolytic enzyme complexes, namely cellulosomes, on the historical ethanol producer Saccharomyces cerevisiae for simultaneous and synergistic saccharification and fermentation of cellulose to ethanol. The feasibility of assembling cellulosome structures on yeast cell surfaces was first demonstrated by incubating the miniscaffoldin displayed yeasts with the Escherichia coli cell lysates containing three cellulolytic enzymes that were necessary for hydrolyzing cellulose into glucose. The functionally-assembled minicelluosomes retained the synergism for cellulose hydrolysis, resulting in a higher ethanol production level when compared to that obtained from a free cellulase system.;To create a microorganism suitable for a more cost-effective process, called consolidated bioprocessing (CBP), a synthetic consortium capable of displaying mini-cellulosomes on the cell surface via intercellular complementation was subsequently created. In this case, the minicellulosomes were assembled in vivo on yeast surfaces for direct ethanol production and cell growth from cellulose. To tackle the relatively modest ethanol production of the yeast consortium, a designer cellulosme based on the unique feature of the anchoring -adaptor scaffoldin strategy to amplify the number of enzymatic subunits was created. The increased rate in ethanol production indicated that enzyme proximity was crucial to cellulosomal synergy.;To further extend the metabolic engineering strategy toward environmental sustainability, engineered S. cerevisiae strains expressing cysteine desulfhydrase and/or AtPCS were created for enhanced accumulation of arsenic as an efficient biosorbent for environment cleanup.
机译:随着我们的社会朝着技术含量更高和工业化的未来迈进,能源和环境的可持续性是我们今天面临的两个最具挑战性的问题。借助重组分子技术的最新进展,已对多种宿主生物进行了代谢工程改造,以提高生物吸附和生物催化能力。这显示出巨大的希望,并已成为生物修复和生物燃料生产的有吸引力的工具。针对这些挑战,本论文着重于代谢工程在生物燃料生产和砷修复中的应用。本论文的第一个目标是创建一种高效且廉价的全细胞生物催化剂,以努力生产经济上兼容且可持续的生物燃料。 ,例如纤维素乙醇。所使用的方法是通过在历史悠久的乙醇生产商酿酒酵母(Saccharomyces cerevisiae)上对多功能纤维素分解酶复合物(即纤维素体)进行表面展示,以同时和协同地糖化并将纤维素发酵为乙醇。首先通过将展示在微型支架上的酵母与含有三种纤维素分解酶的大肠杆菌细胞裂解液孵育来证明在酵母细胞表面上组装纤维素体结构的可行性,所述纤维素分解酶是将纤维素水解为葡萄糖所必需的。经过功能组装的微型细胞体保留了纤维素水解的协同作用,与从游离纤维素酶系统获得的乙醇相比,乙醇的生产水平更高。;要创建一种适合于更具成本效益的过程的微生物,称为整合生物处理(CBP) ,随后创建了一个能够通过细胞间互补在细胞表面展示微型细胞体的合成联合体。在这种情况下,将微纤维素体在体内组装在酵母表面上,以直接生产乙醇并从纤维素中生长细胞。为了解决酵母财团的相对适度的乙醇生产,基于锚定-适配子支架蛋白策略的独特特征的设计纤维素酶被创建,以放大酶亚基的数量。乙醇生产速率的提高表明酶的接近对于纤维素酶的协同作用至关重要。为了进一步将代谢工程策略扩展到环境可持续性,创建了表达半胱氨酸脱氢酶和/或AtPCS的工程酿酒酵母菌株,以提高砷的有效积累。用于环境净化的生物吸附剂。

著录项

  • 作者

    Tsai, Shen-Long.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号