首页> 外文学位 >A Computational Model for Discrete-to-Continuum Dislocation-Based Crystal Plasticity.
【24h】

A Computational Model for Discrete-to-Continuum Dislocation-Based Crystal Plasticity.

机译:基于离散到连续位错的晶体可塑性的计算模型。

获取原文
获取原文并翻译 | 示例

摘要

In metals, the evolution of the underlying dislocation microstructure is responsible for most of their mechanical properties of engineering interest. However, in spite of the microscopic origin of plasticity, models of plastic flow are still mostly based on phenomenological equations. These models not only are limited to the range spanned by the supporting database, but also fail to predict characteristic phenomena of plastic flow such as size effects and formation of dislocation patterns.;The objective of this research is to develop and implement a self-consistent computational framework for dislocation-based plasticity at the mesoscale. In the proposed framework, the collective motion of dislocations, governed by mutual dislocation interactions and applied stress field, determines the plastic component of strain during the deformation process of crystals. In turn, plastic strain affects the stress field entering as a source of eigenstrains in the displacement boundary value problem. In order to formulate rigorous kinetic equations governing the time evolution of dislocation densities and plastic flow, the model builds on the well-established incompatible kinematics of the theory of continuously distributed dislocations. Based on thermodynamic considerations, we develop a constitutive relationship that allows to determine the average dislocation flux as a function of the self-consistent stress field and dislocation densities.;As a first special case, we express the two dimensional version of the computational framework in both its strong and weak forms. Coupled finite element simulations of plane strain micro-indentation experiments are performed, where we solve simultaneously for the displacement field, dislocation densities and plastic components of deformation. Experimental comparison is provided.;As a second special case, we formulate the framework for discrete dislocation densities, recovering the equation of motion used in discrete dislocation dynamics simulations. In order to study the rate of dislocation reactions we implement a graph theory- based finite element method for discrete dislocation dynamics. According to this formulation the dislocation configuration is discretized in its entangled structure using vertex degrees of freedom and edge shape functions, chosen to maximize accuracy and minimize the computational cost. Dislocation reactions (such as cross-slip, junction formation and annihilation) are expressed in terms of flow-conserving network operations. As an application of the method we analyze the rate of cross-slip if fcc metals, study the dependence of the activation energy on the resolved shear stress and compare with experiments.
机译:在金属中,基本位错微结构的演变是其对工程感兴趣的大多数机械性能的原因。然而,尽管从微观上讲可塑性,塑性流动模型仍主要基于现象学方程。这些模型不仅限于支持数据库所涵盖的范围,而且无法预测塑性流动的特征现象,例如尺寸效应和位错图案的形成。;本研究的目的是开发和实现自洽的中尺度上基于位错的可塑性的计算框架。在提出的框架中,位错的集体运动受相互位错相互作用和施加的应力场的控制,决定了晶体变形过程中应变的塑性分量。反过来,塑性应变会影响作为位移边界值问题中本征源的应力场。为了制定严格的动力学方程来控制位错密度和塑性流动的时间演变,该模型建立在连续分布的位错理论的公认的不相容运动学的基础上。基于热力学考虑,我们建立了本构关系,可以确定平均位错通量作为自洽应力场和位错密度的函数。作为第一个特例,我们用二维形式表示计算框架。它的强弱形式。进行了平面应变微压痕实验的耦合有限元模拟,我们同时求解了位移场,位错密度和变形塑性分量。作为第二种特殊情况,我们建立了离散位错密度的框架,恢复了离散位错动力学模拟中使用的运动方程。为了研究位错反应的速率,我们针对离散位错动力学实施了一种基于图论的有限元方法。根据此公式,使用顶点自由度和边缘形状函数将位错配置离散化为纠缠结构,以最大程度地提高准确性并最小化计算成本。错位反应(如交叉滑移,结形成和an灭)以节省流量的网络操作表示。作为该方法的应用,我们分析了fcc金属的横向滑动率,研究了活化能对解析剪切应力的依赖性,并与实验进行了比较。

著录项

  • 作者

    Po, Giacomo.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Mechanical.;Physics Solid State.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号